Spelling suggestions: "subject:"time resolved photoluminescence"" "subject:"lime resolved photoluminescence""
1 |
The Study of Carrier Cooling in InN Thin FilmTseng, Yao-Gong 02 September 2011 (has links)
The thesis investigates hot carrier relaxation and carrier recombination
mechanism of a InN thin film grown on LAO(LiAlO2) substrate with a ultrafast
time-resolved photoluminescence apparatus. Carriers were excited with laser pulses of energy 1.5 eV and of pulsewidth 150 fs from a Ti:sapphire laser. The photoexcited carriers relax excessive energy mostly within 10 ps thorough carrier-LO-phonon interaction. The effective carrier-LO-phonon emission times were estimated 197 to 58 fs in the temperature range from 250 to 35 K. The Shockley-Read-Hall coefficient was found around 0.8 ns-1. The Auger recombination was trivial at 35 K and become significant at 250 K. The fitted radiative recombination was much smaller than the theoretical estimate. Both effective carrier-LO-phonon scattering times and the radiative and nonradiative decay rates of the studied m-plane InN were found to be smaller than those of c-plane InN in other reports.
|
2 |
The Time-Resolved Photoluminescence Study of InN Film and InAs/GaAs QDsWu, Chieh-lung 29 July 2004 (has links)
Abstract
We have extended the spectral range of the current PL-upconversion apparatus to be operated in infrared. Using the IRPL-upconversion¡Awe study the behavior of carrier cooling of InN film and the relationship between the spacer and lifetime in InAs/GaAs stacked QDs .
We excited InN film of the band gap of 0.74eV with ultrafast Ti:sapphire laser of the wavelength 404nm. We found the phonon emission time by hot carriers of InN is 14fs. The hot carriers release their excess energy to the lattice of 35K with a timescale of 100ps. We observed in InAs/GaAs QDs that the shorter life time for samples with thin spacer is due to tunneling effect.
|
3 |
Investigation of zincblende, wurtzite, and mixed phase InP nanowires by photocurrent, photoluminescence and time-resolved photoluminescence spectroscopiesPemasiri, Karunananda January 2013 (has links)
No description available.
|
4 |
Photoluminescence Properties Of Si Nanocrystals Embedded In Sio2 MatrixSeyhan, Ayse 01 March 2010 (has links) (PDF)
This thesis examines the luminescence properties of nanoscale silicon (Si) by
using spectroscopic techniques. Since the development of new optical devices
requires understanding light emission mechanism optical spectroscopy has
become more important tool in the analysis of these structures. In this thesis, Si
nanocrystals embedded in SiO2 matrix will be studied.
Photoluminescence (PL) and Time-resolved photoluminescence spectroscopy
(TRPL) have been used to detect the light emission in UV-Vis-NIR range.
Experiments have been performed in the temperature range 10-300 K. PL is
sensitive to impurities and defects that affect materials quality and device
performance. In this context, the role of defects in limiting the luminescence of Si
nanocrystals and the removal of these defects by hydrogen passivation has been
investigated.
v
TRPL was employed to determine the time evolution of photoluminescence as
function of temperature. The decay time of the PL spectra was determined by a
stretched exponential function and perfectly fitted to an expression based on three
excitonic levels. Carrier lifetimes associated with these three levels were
determined and compared with literature.
Additionally, temporal variation of PL from free-standing Si nanoparticles is
studied under a strong laser illumination. The observed bleaching behavior (time
dependent emission intensity), which is reversible, have discussed in terms of
exciton trapping at the interface between nanocrystal and the surrounding oxide
layer.
The results of this thesis will provide new insight on the understanding of light
emission mechanism of Si nanocrytals.
|
5 |
Carrier Lifetime Relevant Deep Levels in SiCBooker, Ian Don January 2015 (has links)
Silicon carbide (SiC) is currently under development for high power bipolar devices such as insulated gate bipolar transistors (IGBTs). A major issue for these devices is the charge carrier lifetime, which, in the absence of structural defects such as dislocations, is influenced by point defects and their associated deep levels. These defects provide energy levels within the bandgap and may act as either recombination or trapping centers, depending on whether they interact with both conduction and valence band or only one of the two bands. Of all deep levels know in 4H-SiC, the intrinsic carbon vacancy related Z1/2 is the most problematic since it is a very effective recombination center which is unavoidably formed during growth. Its concentration in the epilayer can be decreased for the production of high voltage devices by injecting interstitial carbon, for example by oxidation, which, however, results in the formation of other new deep levels. Apart from intrinsic crystal flaws, extrinsic defects such as transition metals may also produce deep levels within the bandgap, which in literature have so far only been shown to produce trapping effects. The focus of the thesis is the transient electrical and optical characterization of deep levels in SiC and their influence on the carrier lifetime. For this purpose, deep level transient spectroscopy (DLTS) and minority carrier transient spectroscopy (MCTS) variations were used in combination with time-resolved photoluminescence (TRPL). Paper 1 deals with a lifetime limiting deep level related to Fe-incorporation in n-type 4H-SiC during growth and papers 2 and 3 focus on identifying the main intrinsic recombination center in p-type 4H-SiC. In paper 4, the details of the charge carrier capture behavior of the deeper donor levels of the carbon vacancy, EH6/7, are investigated. Paper 5 deals with trapping effects created by unwanted incorporation of high amounts of boron during growth of n-type 4H-SiC which hinders the measurement of the carrier lifetime by room temperature TRPL. Finally, paper 6 is concerned with the characterization of oxidation-induced deep levels created in n- and p-type 4H- and 6H-SiC as a side-product of lifetime improvement by oxidation. In paper 1, the appearance of a new recombination center in n-type 4H-SiC, the RB1 level is discussed and the material is analyzed using room temperature TRPL, DLTS and pnjunction DLTS. The level appears to originate from a reactor contamination with Fe, a transition metal that generally leads to the formation of several trapping centers in the bandgap. Here it is found that under specific circumstances beneficial to the growth of high-quality material with a low Z1/2 concentration, the Fe incorporation also creates an additional recombination center capable of limiting the carrier lifetime. In paper 2, all deep levels found in p-type 4H-SiC grown at Linköping University which are accessible by DLTS and MCTS are investigated with regard to their efficiency as recombination centers. We find that none of the detectable levels is able to reduce carrier lifetime in p-type significantly, which points to the lifetime killer being located in the top half of the bandgap and having a large hole to electron capture cross section ratio (such as Z1/2, which is found in n-type material), making it undetectable by DLTS and MCTS. Paper 3 compares carrier lifetimes measured by temperature-dependent TRPL measurements in n- and p-type 4H-SiC and it is shown that the lifetime development over a large temperature range (77 - 1000 K) is similar in both types. This is interpreted as a further indication that the carbon vacancy related Z1/2 level is the main lifetime killer in p-type. In paper 4, the hole and electron capture cross sections of the near midgap deep levels EH6/7 are characterized. Both levels are capable of rapid electron capture but have only small hole capture rates, making them insignificant as recombination centers, despite their advantageous position near midgap. Minority carrier trapping by boron, which is both a p-type dopant and an unavoidable contaminant in 4H-SiC grown by CVD, is investigated in paper 5. Since even the shallow boron acceptor levels are relatively deep in the bandgap, minority trap and-release effects are detectable in room-temperature TRPL measurements. In case a high density of boron exists in n-type 4H-SiC, for example leached out from damaged graphite reactor parts during growth, we demonstrate that these trapping effects may be misinterpreted in room temperature TRPL measurements as a long free carrier lifetime. Paper 6 uses MCTS, DLTS, and room temperature TRPL to characterize the oxidation induced deep levels ON1 and ON2 in n- and p-type 4H- and their counterparts OS1-OS3 in 6H-SiC. The levels are found to all be positive-U, coupled two-levels defects which trap electrons efficiently but exhibit very inefficient hole capture once the defect is fully occupied by electrons. It is shown that these levels are incapable of significantly influencing carrier lifetime in epilayers which underwent high temperature lifetime enhancement oxidations. Due to their high density after oxidation and their high thermal stability they may, however, act to compensate n-type doping in low-doped material.
|
6 |
Localization dynamics of paraexcitons and their lattice relaxation at oxygen vacancies in cuprous oxide / 亜酸化銅パラ励起子の酸素欠陥への局在化のダイナミクスと格子緩和の研究Sandhaya Koirala 23 July 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18494号 / 理博第4009号 / 新制||理||1578(附属図書館) / 31380 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 中 暢子, 教授 田中 耕一郎, 教授 金光 義彦 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
7 |
Photoluminescence Reveals Charge Carrier Recombination in Organic and Hybrid Semiconductors / Photolumineszenz zeigt die Rekombination der Ladungsträger in organischen und hybriden HalbleiternKudriashova, Liudmila January 2019 (has links) (PDF)
In this work, we elucidated recombination kinetics in organic and hybrid semiconductors by steady-state and time-resolved PL spectroscopy. Using these simple and very flexible experimental techniques, we probed the infrared emission from recombining free charge carriers in metal–halide perovskites, as well as the deep blue luminescence from intramolecular charge-transfer states in novel OLED emitters. We showed that similar state diagrams and kinetic models accurately describe the dynamics of excited species in these very different material systems.
In Chapters 4 and 5, we focused on lead iodide perovskites (MAPI and FAPI), whose comparatively developed deposition techniques suited the systematic material research. In MAPI, we harnessed the anomalous dependence of transient PL on the laser repetition rate in order to investigate the role of interfaces with the commonly used charge-selective layers: PC60BM, spiro-MeOTAD, and P3HT. The film was deposited on a large precut substrate and separated into several parts, which were then covered with the charge-selective layers. Thereby, the same bulk perovskite structure was maintained for all samples. Consequently, we were able to isolate interface-affected and bulk carrier recombination. The first one dominated the fast component of PL decay up to 300 ns, whereas the last was assigned to the remaining slow component. The laser repetition rate significantly prolonged PL decay in MAPI with additional interfaces while shortening the charge carrier lifetime in the pristine film. We qualitatively explained this effect by a kinetic model that included radiative electron–hole recombination and nonradiative trap-assisted recombination. All in all, we showed that the apparent PL lifetime in MAPI is to large extend defined by the laser repetition rate and by the adjacent interfaces.
Further, we studied photon recycling in MAPI and FAPI. We monitored how the microscopic PL transforms while propagating through the thin perovskite film. The emission was recorded within 5orders of magnitude in intensity up to 70μm away from the excitation spot. The Beer–Lambert law previously failed to describe the complex interplay of the intrinsic PL spectrum and the additional red-shifted peak. Therefore, we developed a general numerical model that accounts for self-absorption and diffusion of the secondary charge carriers. A simulation based on this model showed excellent agreement with the experimental spatially resolved PL maps. The proposed model can be applied to any perovskite film, because it uses easily measurable intrinsic PL spectrum and macroscopic absorption coefficient as seeding parameters.
In Chapter 6, we conducted an extensive photophysical study of a novel compact deep blue OLED emitter, SBABz4, containing spiro-biacridine and benzonitrile units. We also considered its single-donor monomer counterpart, DMABz4, in order to highlight the structure–property relationships. Both compounds exhibited thermally activated delayed fluorescence (TADF), which was independently proven by oxygen quenching and temperature-dependent transient PL measurements. The spiro-linkage in the double-donor core of SBABz4 rendered its luminescence pure blue compared to the blue-green emission from the single-donor DMABz4. Thus, the core-donor provided desirable color tuning in the deep blue region, as opposed to the common TADF molecular design with core-acceptor. Using PL lifetimes and efficiencies, we predicted EQEmax = 7.1% for SBABz4-based OLED, whereas a real test device showed EQEmax = 6.8%. Transient PL was recorded from the solutions and solid films in the unprecedentedly broad dynamic range covering up to 6orders of magnitude in time and 8orders of magnitude in intensity. The stretched exponent was shown to fit the transient PL in the films very well, whereas PL decay in dilute solution was found purely exponential. When the emitter was embedded in the host matrix that prevented aggregation, its TADF properties were superior in comparison with the pure SBABz4 film. Finally, using temperature-dependent transient PL data, we calculated the TADF activation energy of 70 meV.
To sum up, this Thesis contributes to the two fascinating topics of the last decade’s material research: perovskite absorbers for photovoltaics and TADF emitters for OLEDs. We were lucky to work with the emerging systems and tailor for them new models out of the well-known physical concepts. This was both exciting and challenging. In the end, science of novel materials is always a mess. We hope that we brought there a bit of clarity and light. / Im Rahmen dieser Arbeit wurden Rekombinationsmechanismen in organischen und hybriden Halbleitern mittels statischer und zeitaufgelöster Photolumineszenz-Spektroskopie untersucht. Diese einfachen und flexiblen experimentellen Methoden erlaubten es, sowohl die infrarote Emission rekombinierender freier Ladungsträger in Perowskiten als auch die blaue Lumineszenz intramolekularer Ladungstransferzustände in neuartigen OLED-Emittern zu erforschen. Es wurde gezeigt, dass das Verhalten angeregter Ladungsträger in sehr unterschiedlichen Materialsystemen durch vergleichbare Zustandsdiagramme und kinetische Modelle beschrieben werden kann.
Kapitel 4 und 5 legen den Fokus auf Bleiiodid-Perowskite (MAPI und FAPI), deren vergleichsweise etablierte Herstellungsmethode systematische Untersuchungen erlaubt. In MAPI wurde die anomale Abhängigkeit transienter PL von der Repetitionsrate des Lasers verwendet, um die Bedeutung der Grenzflächen zwischen Perowskitschicht und den gängigsten ladungsselektiven Schichten PC60BM, spiro-MeOTAD und P3HT zu untersuchen. Dafür wurde die Perowskitschicht auf ein Substrat aufgebracht, dieses in mehrere gleiche Stücke geteilt und anschließend mit einer jeweils unterschiedlichen ladungsselektiven Schicht bedeckt. Dies sicherte die Vergleichbarkeit der aktiven Schicht der verschiedenen Proben. Durch diesen Ansatz konnten der Einfluss des aktiven Materials als auch der seiner Grenzflächen auf die Ladungsträgerrekombination getrennt beobachtet werden. Ersterer dominierte den schnellen Anteil des PL-Abfalls, letzterer den langsamen Anteil. Die Repetitionsrate des Lasers verlangsamte den PL-Abfall in MAPI-Filmen mit zusätzlichen Grenzflächen signifikant, während sie die Lebensdauer der Ladungsträger in reinen MAPI- Filmen verkürzte. Dieser Effekt konnte durch ein qualitatives Modell erklärt werden, welches strahlende Elektron–Loch-Rekombination sowie nichtstrahlende Rekombination über Ladungsträgerfallen miteinbezieht. Insgesamt konnte gezeigt werden, dass die PL- Lebensdauer in MAPI stark von der Laserrepetitionsrate sowie von Grenzflächeneffekten abhängig ist.
Des Weiteren wurde der Photon-Recycling-Effekt in MAPI und FAPI untersucht. Dafür wurde verfolgt, wie sich die lokale PL mit ihrer Ausbreitung durch den dünnen Perowskitfilm verändert. Die Emission konnte bis zu 70 μm entfernt von der Anregung gemessen werden, bei einer Abnahme der Intensität um fünf Größenordnungen. Mit reiner Anwendung des Lambert–Beer’sches Gesetzes konnte das auftretende komplexe Zusammenspiel des ursprünglichen Spektrums mit einer zusätzlichen rotverschobenen Emission nicht erklärt werden. Deshalb wurde ein allgemeines numerisches Modell entwickelt, das sowohl Selbstabsorption als auch die Diffusion sekundärer Ladungsträger berücksichtigt. Entsprechende Simulationen zeigten hervorragende Übereinstimmung mit räumlich aufgelösten experimentellen PL-Messungen. Das Modell kann auf jeden Perwoskitfilm angewendet werden, da die nötigen Parameter auf dem einfach messbaren intrinsischen PL- Spektrum und dem makroskopischen Absorptionskoeffizienten des jeweiligen Films beruhen. In Kapitel6 wird die umfangreiche photophysikalische Untersuchung eines neuartigen kompakten blauen OLED-Emitters, SBABz4, welcher Spiro-Biacridine und Benzonitril-Einheiten enthält, beschrieben. Auch sein Gegenstück DMABz4, als einfacher Donator, wurde betrachtet, um Zusammenhänge zwischen Struktur und Materialeigenschaften hervorzuheben. Beide Verbindungen zeigten thermisch-aktivierte verzögerte Fluoreszenz (TADF), welche unabhängig voneinander sowohl durch Sauerstoff- Fluoreszenzlöschung als auch durch temperaturabhängige transiente PL-Messungen nachgewiesen wurde. Die Spiro-Bindung im Inneren des zweifachen Donators SBABz4 führten zu einer, im Vergleich zur blaugrünen Emission des einfachen Donators DMABz4, reinen blauen Lumineszenz. Im Gegensatz zum Aufbau üblicher TADF-Molekülen mit zentralem Akzeptor, erlaubt in diesem Fall der zentrale Donator also die gewünschte Farbeinstellung im tiefblauen Bereich. Mit Hilfe von PL-Lebensdauern und -Effizienzen wurde eine EQEmax von 7.1% für SBABz4-basierte OLEDs abgeschätzt, während ein reales Testexemplar eine EQEmax von 6.8% aufzeigte. Transiente PL wurde für Lösungen sowie für feste Filme in einem beispiellos großen, dynamischen Bereich von sechs Größenordnungen in Zeit und acht Größenordnungen in Intensität aufgenommen. Die transiente PL der Filme lässt sich gut durch eine gestreckte Exponentialfunktion anpassen, während der PL-Abfall der Lösung rein exponentiell verläuft. Die Einbettung des Emitters in der Gast-Matrix, die Aggregieren verhinderte, führten zu gegenüber dem reinen SBABz4-Film überlegenen TADF- Eigenschaften. Zuletzt wurde die TADF Aktivierungsenergie von 70 meV unter alleiniger Verwendung der temperaturabhängigen transienten PL berechnet.
Zusammengefasst steuert diese Doktorarbeit einen Beitrag zu zwei der faszinierendsten Themen der Materialforschung des letzten Jahrzehnts bei: Perowskitabsorbern für die Photovoltaik und TADF-Emittern für OLEDs. Diese Arbeit erlaubte es mit aufkommenden Systemen zu arbeiten und neue Modelle aus bekannten physikalischen Konzepten für sie zu entwickeln. Dies war sowohl spannend als auch anspruchsvoll. Letztlich ist Forschung an neuartigen Materialien immer ein großes Durcheinander. Hoffentlich konnte durch diese Arbeit jedoch ein wenig mehr Klarheit geschaffen werden.
|
8 |
Simulation of Time-Resolved Photoluminescence to Distinguish Bulk and Interface Recombination in Cd(Se,Te) Photovoltaic DevicesFox, Jordan Ryan 29 August 2022 (has links)
No description available.
|
9 |
Characterizing LED with Time-Resolved Photo-Luminescence and Optical Beam Induced Current ImagingWu, Shang-jie 17 February 2011 (has links)
With rapid development of light emitting device, the detection techniques of semiconductor are more and more important, which include time-resolved photoluminescence (TRPL) and optical beam induced current (OBIC) microscopy. In this thesis, we realize the carrier behaviors of active region with multiple quantum wells (MQWs) by these microscopies, and the samples are light emitting diodes (LEDs). However, PL intensity of LEDs increase but OBIC not due to external field compensates, on the other hand, reducing PL lifetime indicates the response time of device shorter with higher reverse bias.
|
10 |
USING TIME-RESOLVED PHOTOLUMINESCENCE SPECTROSCOPY TO EXAMINE EXCITON DYNAMICS IN II-VI SEMICONDUCTOR NANOSTRUCTURESLaura, M Robinson 11 October 2001 (has links)
No description available.
|
Page generated in 0.1035 seconds