Spelling suggestions: "subject:"aimed delays"" "subject:"cimes delays""
11 |
Architectures and Performance Analysis of Wireless Control SystemsDemirel, Burak January 2015 (has links)
Modern industrial control systems use a multitude of spatially distributed sensors and actuators to continuously monitor and control physical processes. Information exchange among control system components is traditionally done through physical wires. The need to physically wire sensors and actuators limits flexibility, scalability and reliability, since the cabling cost is high, cable connectors are prone to wear and tear, and connector failures can be hard to isolate. By replacing some of the cables with wireless communication networks, costs and risks of connector failures can be decreased, resulting in a more cost-efficient and reliable system. Integrating wireless communication into industrial control systems is challenging, since wireless communication channels introduce imperfections such as stochastic delays and information losses. These imperfections deteriorate the closed-loop control performance, and may even cause instability. In this thesis, we aim at developing design frameworks that take these imperfections into account and improve the performance of closed-loop control systems. The thesis first considers the joint design of packet forwarding policies and controllers for wireless control loops where sensor measurements are sent to the controller over an unreliable and energy-constrained multi-hop wireless network. For a fixed sampling rate of the sensor, the co-design problem separates into two well-defined and independent subproblems: transmission scheduling for maximizing the deadline-constrained reliability and optimal control under packet losses. We develop optimal and implementable solutions for these subproblems and show that the optimally co-designed system can be obtained efficiently. The thesis continues by examining event-triggered control systems that can help to reduce the energy consumption of the network by transmitting data less frequently. To this end, we consider a stochastic system where the communication between the controller and the actuator is triggered by a threshold-based rule. The communication is performed across an unreliable link that stochastically erases transmitted packets. As a partial protection against dropped packets, the controller sends a sequence of control commands to the actuator in each packet. These commands are stored in a buffer and applied sequentially until the next control packet arrives. We derive analytical expressions that quantify the trade-off between the communication cost and the control performance for this class of event-triggered control systems. The thesis finally proposes a supervisory control structure for wireless control systems with time-varying delays. The supervisor has access to a crude indicator of the overall network state, and we assume that individual upper and lower bounds on network time-delays can be associated to each value of the indicator. Based on this information, the supervisor triggers the most appropriate controller from a multi-controller unit. The performance of such a supervisory controller allows for improving the performance over a single robust controller. As the granularity of the network state measurements increases, the performance of the supervisory controller improves at the expense of increased computational complexity. / <p>QC 20150504</p>
|
12 |
Potential of Smart Contract in Business to BusinessVattikutti, Avinash January 2018 (has links)
The implementation of smart contract technology with their plausible applications in a business to business are explored. The thesis work shows how Blockchain technology works on the concept of decentralized system which is beneficial to eliminate the need for central authority. The thesis focuses on elimination of challenges pertaining to the selected departments in an organization. The thesis resolves challenges pertaining to lack of transparency, traceability and significant time-delays while in the process of decision making. The influence of blockchain technology and smart contract technology to eliminate these challenges are discussed. Logic of the smart contract and working of the blockchain pertaining to a specific industrial case study are demonstrated. Methodology to set up a smart contract interface in a business to business setting is investigated in this thesis. An observation study has been done in order to show how transparency, traceability and time delay in decision making is achieved by using smart contract interface. This thesis also shows how the blockchain and smart contract technology tries to implement coordination theory.
|
13 |
Exponential Stability of Intrinsically Stable Dynamical Networks and Switched Networks with Time-Varying Time DelaysReber, David Patrick 01 April 2019 (has links)
Dynamic processes on real-world networks are time-delayed due to finite processing speeds and the need to transmit data over nonzero distances. These time-delays often destabilize the network's dynamics, but are difficult to analyze because they increase the dimension of the network.We present results outlining an alternative means of analyzing these networks, by focusing analysis on the Lipschitz matrix of the relatively low-dimensional undelayed network. The key criteria, intrinsic stability, is computationally efficient to verify by use of the power method. We demonstrate applications from control theory and neural networks.
|
14 |
A ROBUST CONTROL THEORETIC APPROACH TO FLOW CONTROLLER DESIGNS FOR CONGESTION CONTROL IN COMMUNICATION NETWORKSQUET, Pierre-Francois D. 18 October 2002 (has links)
No description available.
|
15 |
Introducing Stochastic Time Delays in Gradient Optimization as a Method for Complex Loss Surface Navigation in High-Dimensional SettingsManner, Eric Benson 24 April 2023 (has links) (PDF)
Time delays are an inherent part of real-world systems. Besides the apparent slowing of the system, these time delays often cause destabilization in otherwise stable systems, and perhaps even more unexpectedly, can stabilize an unstable system. Here, we propose the Stochastic Time-Delayed Adaptation as a method for improving optimization on certain high-dimensional surfaces, which simply wraps a known optimizer --such as the Adam optimizer-- and is able to add a variety of time-delays. We begin by exploring time delays on certain gradient-based optimization methods and their affect on the optimizer's convergence properties. These optimizers include the standard gradient descent method and the more recent Adam Optimizer, where the latter is commonly used in neural networks for deep learning. To begin to describe the effect of time-delays on these methods, we use the theory of intrinsic stability. It has been shown that a system that possesses the property of intrinsic stability (a stronger form of global stability) will maintain its stability when subject to any time delays, e.g., constant, periodic, stochastic, etc. In feasible cases, we find relevant conditions under which the optimization method adapted with time delays is intrinsically stable and therefore converges to the system's minimal value. Finally, we examine the optimizer's performance using common optimizer performance metrics. This includes the number of steps an algorithm takes to converge and also the final loss value in relation to the global minimum of the loss function. We test these outcomes using various adaptations of the Adam optimizer on multiple common test optimization functions, which are designed to be difficult for vanilla optimizer methods. We show that the Stochastic Time-Delayed Adaptation can greatly improve an optimizer's ability to find a global minimum of a complex loss function.
|
16 |
Arterial blood gas: an experiment to study the effects of temperature and time delays on the outcome of a blood gas resultBaker, Lynette Margaret 31 January 2008 (has links)
An arterialblood gas analysis which is conducted in critical care areas contributes to the assessment of a patient's ventilatory status and acid
-base balance.
The purpose of this research was to determine the relationship of time delays and temperature on the result of a blood gas analysis. The objective was to either accept or refute the null hypothesis, that there is no relationship between temperature and time delays and an arterial blood gas result
Fifteen subjects were randomly selected. The researcher drew three samples of arterial blood from each subject. Ethical principles were observed.
An inferential non-parametric statistic was used. The chi-squared test was used to test the hypothesis and the Friedman and the Wilcoxon signed ranks test were used to test the differences between the means.
The results revealed that there was a relationship between time delays, temperature and the arterial blood gas result. The null hypothesis was rejected. / Health Stusies / M.A. (Health Studies)
|
17 |
Arterial blood gas: an experiment to study the effects of temperature and time delays on the outcome of a blood gas resultBaker, Lynette Margaret 31 January 2008 (has links)
An arterialblood gas analysis which is conducted in critical care areas contributes to the assessment of a patient's ventilatory status and acid
-base balance.
The purpose of this research was to determine the relationship of time delays and temperature on the result of a blood gas analysis. The objective was to either accept or refute the null hypothesis, that there is no relationship between temperature and time delays and an arterial blood gas result
Fifteen subjects were randomly selected. The researcher drew three samples of arterial blood from each subject. Ethical principles were observed.
An inferential non-parametric statistic was used. The chi-squared test was used to test the hypothesis and the Friedman and the Wilcoxon signed ranks test were used to test the differences between the means.
The results revealed that there was a relationship between time delays, temperature and the arterial blood gas result. The null hypothesis was rejected. / Health Stusies / M.A. (Health Studies)
|
18 |
Evaluation of a Programmable Hydraulic Valve for Drill Rig Applicationsde Brun Mangs, Jonathan, Tillquist, Mikael January 2018 (has links)
The increase of intelligent systems can be seen in every industry. Integrated sensors and processors are used with internal control systems to create better performance for mobile hydraulic applications. The report describes how an evaluation was made to see if the productivity of a drill rig could be increased. This was done by implementing a programmable hydraulic valve to control the hydraulic drilling functions. The productivity would be increased by reducing the downtime due to jamming in the drill hole. Jamming occur when the system does not compensate for changes in rock conditions. By conducting a series of tests in a controlled environment with simulated loads, the response time of the CMA system and original system could be determined and compared. The CMA system had a response time that was 60-64% faster than the original system. Two different implementations of a controller was tested. Ziegler-Nichols method was used to get the initial value of the PI parameters. The controller that was implemented onboard the valve’s CPU was considered more successfull to reduce jamming. A drill test was conducted to ensure that the programmable valve could handle a drilling procedure with the controller that was implemented onboard the valve’s CPU. The valve handled the drilling procedure well.
|
19 |
Upgrading the Control and Monitoring system for the TOFOR neutron time-of-flight spectrometer at JETValldor-Blücher, Johan January 2013 (has links)
This report describes the development and testing of the upgraded Control and Monitoring (C&Mu) system for the TOFOR neutron spectrometer. TOFOR is currently performing plasma diagnostics for the JET experimental fusion reactor. The purpose of the C&Mu system is to enable monitoring of the amplitude dependent time delays of TOFOR. In order to perform this monitoring function the C&Mu system must comprise a pulsed light source with variable intensity and a reference time signal. In this work a reference time signal has been retrieved from a laser comprising a motorized polarizer. This has been accomplished by installing a photomultiplier tube and a beamsplitter cube. The beamsplitter cube splits the laser light into two parts and directs one part into the photomultiplier tube. The photomultiplier tube converts the light into an electrical reference time signal. A control program has been developed for the motorized polarizer, enabling the user to vary the intensity of the light over the interval from 0% to 100%. The C&Mu system has been performance tested and it was found that the time resolution of the system is about 0.1ns and the time stability of the system is about 0.12ns over 27 hours. The system is more than adequate to monitor variations in time delays at TOFOR of several nanoseconds, over a full JET day. The C&Mu system is ready to be installed on TOFOR.
|
20 |
Contribution à l'identification des systèmes à retards et d'une classe de systèmes hybrides / Contribution to the identification of time delays systems and a class of hybrid systemsIbn Taarit, Kaouther 17 December 2010 (has links)
Les travaux présentés dans cette thèse concernent le problème d'identification des systèmes à retards et d'une certaine classe de systèmes hybrides appelés systèmes "impulsifs".Dans la première partie, un algorithme d'identification rapide a été proposé pour les systèmes à entrée retardée. Il est basé sur une méthode d'estimation distributionnelle non asymptotique initiée pour les systèmes sans retard. Une telle technique mène à des schémas de réalisation simples, impliquant des intégrateurs, des multiplicateurs et des fonctions continues par morceaux polynomiales ou exponentielles. Dans le but de généraliser cette approche pour les systèmes à retard, trois exemples d'applications ont été étudiées. La deuxième partie a été consacrée à l'identification des systèmes impulsifs. En se basant sur le formalisme des distributions, une procédure d'identification a été élaborée afin d'annihiler les termes singuliers des équations différentielles représentant ces systèmes. Par conséquent, une estimation en ligne des instants de commutations et des paramètres inconnus est prévue indépendamment des lois de commutations. Des simulations numériques d'un pendule simple soumis à des frottements secs illustrent notre méthodologie / This PhD thesis concerns the problem of identification of the delays systems and the continuous-time systems subject to impulsive terms.Firstly, a fast identification algorithm is proposed for systems with delayed inputs. It is based on a non-asymptotic distributional estimation technique initiated in the framework of systems without delay. Such technique leads to simple realization schemes, involving integrators, multipliers andContribution to the identification of time delays systems and a class of hybrid systems piecewise polynomial or exponential time functions. Thus, it allows for a real time implementation. In order to introduce a generalization to systems with input delay, three simple examples are presented.The second part deals with on-line identification of continuous-time systems subject to impulsive terms. Using a distribution framework, a scheme is proposed in order to annihilate singular terms in differential equations representing a class of impulsive systems. As a result, an online estimation of unknown parameters is provided, regardless of the switching times or the impulse rules. Numerical simulations of simple pendulum subjected to dry friction are illustrating our methodology
|
Page generated in 0.0419 seconds