Spelling suggestions: "subject:"timedependent"" "subject:"time·dependent""
101 |
Characterization of the Viscoelastic Fracture of Solvated Semi-Interpenetrating Polymer Network Silicone HydrogelsTizard, Geoffrey Alexander 17 August 2010 (has links)
The unique compressive, optical, and biocompatible properties of silicone hydrogels allow them to be used in a wide variety of applications in the biomedical field. However, the relatively weak mechanical behavior, as well as the highly deformable nature of these elastomeric materials, presents a myriad of challenges when attempting to understand their constitutive and fracture properties in order to improve hydrogel manufacturing and performance in applications. In this thesis, a series of experimental techniques were developed or adapted from common engineering approaches in order to investigate the effects of rate and temperature on the viscoelastic constitutive and fracture behavior of two solvated semi-interpenetrating polymer network silicone hydrogel systems.
Viscoelastic characterization of these material systems was performed by implementing a series of uniaxial tension and dynamic mechanical analysis shear tests in order to generate relevant master curves and corresponding thermal shift factors of such properties as shear relaxation modulus, dynamic moduli, and the loss factor. Concurrently, the cohesive fracture properties were studied by utilizing a "semi-infinite" strip geometry under constrained tension in which thin pre-cracked sheets of these cured hydrogels were exposed to several different loading conditions. Fracture tests were performed over a relevant range of temperatures and crosshead rates to determine and generate a master curve of the subcritical strain energy release rate. Experimental methods utilizing high-speed camera images and digital image correlation to monitor viscoelastic strain recovery in the wake of a propagating crack were explored. The results from this thesis may prove useful in an investigation of the interfacial fracture of these hydrogel systems on several different polymer substrates associated with an industrial manufacturing problem. / Master of Science
|
102 |
Evaluating the Mechanical Properties and Long-Term Performance of Stabilized Full-Depth Reclamation Base MaterialsAmarh, Eugene Annan 08 June 2017 (has links)
State highway agencies are searching for more cost-effective methods of rehabilitating roads. One sustainable solution is full-depth reclamation (FDR), a pavement rehabilitation technique that involves pulverizing and reusing materials from existing distressed pavements in place. There is, however, limited information on the long-term properties of these recycled materials. One important property, the elastic modulus, indicates the structural capacity of pavement materials and is highly recommended for design purposes by the Mechanistic Empirical Pavements Design Guide (MEPDG). The elastic modulus directly impacts selection of the overall pavement thickness, and an accurate estimation of the modulus is therefore key to a cost-effective pavement design. This thesis researched the modulus trends and functional properties of three in-service pavements rehabilitated with the FDR technique during the 2008 Virginia Department of Transportation (VDOT) construction season. Foamed asphalt (2.7% with 1% cement), asphalt emulsion (3.5%), and Portland cement (5%) were used as stabilizing agents for the FDR layers. Several deflection tests and distress surveys were conducted for the pavement sections before and after construction. An automated road analyzer (ARAN) was used to collect distress data over a period of 7 years. Deterioration models were developed to predict the durability of differently stabilized FDR pavements and compared to reference sections rehabilitated with traditional asphalt concrete (AC) overlays. The results of the moduli measured for the recycled base materials varied significantly over time. These changes were attributed to curing after construction, seasonal effects, and subgrade moisture. The structural capacity of the pavements improved irrespective of the stabilizing agent used. Rutting was higher for the foamed asphalt and emulsion sections. The International Roughness Index (IRI) was better for the cement stabilized sections compared asphalt stabilized sections. The Critical Condition Index (CCI) was similar for all treatments at the end of the evaluation period. The durability of the sections was comparable, with the cement stabilized FDR sections slightly outperforming the asphalt stabilized sections. / Master of Science / Replacing all roads in bad condition with new reconstruction or with traditional rehabilitation alternatives such as the mill and overlay will cost state highway agencies (SHAs) huge sums of funds. State departments of transportation are therefore seeking cost-effective ways to rehabilitate roads under their jurisdiction. An innovative technique being used by several SHAs today is full depth reclamation (FDR) which involves breaking down an existing roadway and immediately reusing the materials to construct a strengthened base layer for a new road. Despite the increasing use of FDR in recent years, several questions remain unanswered regarding the behavior of the strengthened base materials and their performance in the long-term under traffic loads. The elastic modulus is one material property that indicates the strength or structural capacity of pavement materials and usually impacts the selection of the overall thickness of the roadway. This thesis researched the modulus trends and functional properties of three in-service roadways rehabilitated with the FDR technique in 2008 by the Virginia Department of Transportation. Foamed asphalt (2.7% with 1% cement), asphalt emulsion (3.5%), and Portland cement (5%) were used to strengthen the FDR base layers. Several deflection tests and distress surveys were conducted for the pavement sections before and after construction. The moduli measured for the recycled base materials varied significantly over time. These changes were attributed to curing after construction, seasonal effects, and subgrade moisture. Long term performance monitoring of the projects showed that rutting was higher for the foamed asphalt and emulsion sections. The International Roughness Index (IRI), which gives an indication of the overall ride quality i.e. how smooth the pavement surface is, was better for the cement stabilized FDR sections compared to the asphalt stabilized counterparts. The structural capacity of the pavements improved irrespective of the stabilizing treatment used. The Critical Condition Index (CCI) was similar for all treatments at the end of the evaluation period. The durability of the sections was comparable, with the cement stabilized sections projected to last slightly longer than asphalt sections.
|
103 |
Numerical simulation of the dynamics of a trapped molecular ionHashemloo, Avazeh January 2016 (has links)
This thesis explores the dynamics of a heteronuclear diatomic molecular ion, possessing a permanent electric dipole moment, µ, which is trapped in a linear Paul trap and can interact with an off-resonance laser field. To build our model we use the rigid-rotor approximation, where the dynamics of the molecular ion are limited to its translational and rotational motions of the center-of-mass. These dynamics are investigated by carrying out suitable numerical calculations. To introduce our numerical methods, we divide our research topic into two different subjects. First, we ignore the rotational dynamics of the ion by assuming µ = 0. By this assumption, the system resembles an atomic ion, which mainly exhibits translational motion for its center of the mass when exposed to an external trapping field. To study this translational behavior, we implement full-quantum numerical simulations, in which a wave function is attributed to the ion. Finally, we study the quantum dynamics of the mentioned wave packet and we compare our results with those obtained classically. In the latter case, we keep the permanent dipole moment of the ion and we study the probable effects of the interaction between the dipole moment and the trapping electric field, on both the translational and the rotational dynamics of the trapped molecular ion. In order to study these dynamics, we implement both classical and semi-classical numerical simulations. In the classical method, the rotational and the translational motions of the center of mass of the ion are obtained via classical equations of motion. On the other hand, in the semi-classical method, while the translational motion of the center-of-mass is still obtained classically, the rotation is treated full-quantum mechanically by considering the rotational wave function of the ion. In the semi-classical approach, we mainly study the probable couplings between the rotational states of the molecular ion, due to the interaction of the permanent dipole moment with the trapping electric field. In the end, we also present a semi-classical model, where the trapped molecular ion interacts with an off-resonance laser field.
|
104 |
A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive systemBell, Iris, Koithan, Mary January 2012 (has links)
BACKGROUND:This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution / (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects / (d) improve systemic resilience.DISCUSSION:The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create "top-down" nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism's allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease.SUMMARY:Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine.
|
105 |
Numerical Methods for Wave Propagation : Analysis and Applications in Quantum DynamicsKieri, Emil January 2016 (has links)
We study numerical methods for time-dependent partial differential equations describing wave propagation, primarily applied to problems in quantum dynamics governed by the time-dependent Schrödinger equation (TDSE). We consider both methods for spatial approximation and for time stepping. In most settings, numerical solution of the TDSE is more challenging than solving a hyperbolic wave equation. This is mainly because the dispersion relation of the TDSE makes it very sensitive to dispersion error, and infers a stringent time step restriction for standard explicit time stepping schemes. The TDSE is also often posed in high dimensions, where standard methods are intractable. The sensitivity to dispersion error makes spectral methods advantageous for the TDSE. We use spectral or pseudospectral methods in all except one of the included papers. In Paper III we improve and analyse the accuracy of the Fourier pseudospectral method applied to a problem with limited regularity, and in Paper V we construct a matrix-free spectral method for problems with non-trivial boundary conditions. Due to its stiffness, the TDSE is most often solved using exponential time integration. In this thesis we use exponential operator splitting and Krylov subspace methods. We rigorously prove convergence for force-gradient operator splitting methods in Paper IV. One way of making high-dimensional problems computationally tractable is low-rank approximation. In Paper VI we prove that a splitting method for dynamical low-rank approximation is robust to singular values in the approximation approaching zero, a situation which is difficult to handle since it implies strong curvature of the approximation space. / eSSENCE
|
106 |
Įtempių ir deformacijų būvis kintamai apkrovai laiko atžvilgiu / Long-term stress and strain analysis for the gradual increase of loadStaškus, Ignas 19 June 2014 (has links)
Monolitinio pastato įrąžoms skaičiuoti, projektuotojas kurdamas pastato skaičiuotinį modelį, jį traktuoja kaip ,,akimirksniu“ pastatytą. Pastato statybos metu nuolatinė apkrova nuo perdangų savojo svorio, auga palaipsniui, betonuojant aukštą po aukšto, kol galiausiai, užbetonuojamas paskutinis aukštas. Darbe pasiūlytas ir skaitiškai realizuotas modelis, įvertinantis betono ir armatūros įtempių bei deformacijų kitimo istoriją dėl laike palaipsniui augančios apkrovos nuo perdangų savojo svorio. Darbe taikomas superpozicijos principas betono valkšnumo deformacijoms, atsižvelgiant į Volterra lygtį. Pasiūlyta matematinė formuluotė pagrįsta matriciniu skaičiavimu ir apibendrintąja funkcijos vidurkio teorema taikant betono valkšnumui. Skaitiniu būdu gauti rezultatai patikrinti analitiškai. Modelis pritaikytas daugiaaukščio pastato papildomų šlyties jėgų perdangose, atsirandančių dėl gretimų kolonų skirtingų poslinkių vystymosi per laiką radimui. Gauti rezultatai patikrinti su apytikslio skaičiavimo rezultatais, taikant normų EC-2 reikalavimus betono valkšnumo deformacijoms. Perdangų praspaudimą kolona, kai pastarosios yra greta pastato standumo branduolių, kurių deformatyvumas yra ženkliai mažesnis, reiktų tikrinti atsižvelgiant į papildomas šlyties jėgas, atsirandančias dėl betono susitraukimo ir valkšnumo įtakos. Darbo apimtis – 99 p. teksto, 54 iliustr., 12 lent. ir 9 literatūros šaltiniai. Atskirai pridedami priedai. / The designer calculates a building as an instantly built. However, during construction the permanent load is increasing gradually because the floors are built step by step. This paper introduces a numerically implemented mathematical model for the column analysis accounting for the stress and strain change in reinforcement and concrete with time due to the increasing in time permanent loads induced by the self-weight of each slab during construction. The mathematical formulation is based on the superposition principle for the creep strain described by Volterra's integro-differential equation and involves a matrix solution of linear equations derived via application of the generalized mean theorem for integration. The results obtained are also verified analytically. Finally, the proposed model is applied to calculate extra shear forces caused by the deflections appearing to the adjacent columns of different cross-sections. The results obtained are also compared with the approximate calculation treating the building as an instantly built. The results indicate that additional shear forces due to different displacements of the adjacent columns are quite mild. However, the additional shear forces can be sufficiently high, if the column is located near the high stiffness walls in a non-sway building. In this case, the extra shear forces should be determined via time-dependent analysis accounting on the creep and shrinkage strains relying on the gradually increasing load during... [to full text]
|
107 |
Mathematical modeling of soil erosion by rainfall and shallow overland flowZheng, Tingting January 2011 (has links)
New analytical and numerical solutions are developed to both the kinematic approximation to the St Venant equations and the Hairsine-Rose (HR) soil erosion model in order to gain a better physical understanding of soil erosion and sediment transport in shallow overland flow. The HR model is unique amongst physically based erosion models in that it is the only one that: considers the entire distribution of the soil s sediment size classes, considers the development of a layer of deposited non-cohesive sediment having different characteristics to the original underlying cohesive soil and considers separately the erosion processes of rainfall detachment, runoff entrainment and gravitational deposition. The method of characteristics and the method of lines were used to develop both the analytical and numerical solutions respectively. These solutions were obtained for boundary and initial conditions typical of those used in laboratory flume experiments along with physically realistic constant and time dependent excess rainfall rates. Depending on the boundary and initial conditions, interesting new solutions of the kinematic wave equation containing expansion waves, travelling shocks as well as solutions which split into an upslope and downslope drying profiles were found. Numerical solutions of the HR model were applied to the experimental flume data of Polyakov and Nearing (2003) obtained under flow conditions which periodically cycled between net erosion and net deposition conditions. While excellent agreement was found with suspended sediment data, the analysis suggested that an additional transport mechanisms, traditionally not included in soil erosion models, was occurring. While the inclusion of bed-load transport improved the ii overall model prediction, it was still not sufficient. Subsequent asymptotic analysis then showed that the interaction of the flow with an evolving bed morphology was in fact far more important than bed load transport. A very interesting finding from this work showed that the traditional criterion of validating sediment transport model based solely on suspended sediment data was not sufficient as reliable predictions could be obtained even when important transport mechanisms were neglected. Experimental plots of sediment discharge or suspended sediment concentration against water discharge in overland flow have been shown to contain significant hysteresis between the falling and rising limbs of the discharge hydrograph. In the final Chapter, the numerical solution developed for the complete system of soil erosion and kinematic flow was used to show that it was possible for the HR model to simulate three of the four hysteresis loops identified in the literature. Counter clock-wise loops, clock-wise loops and figure 8 loops could all be produced as a result of starting with different initial conditions, being mi(x; 0) = 0, mi(x; 0) = pimt and mi(x; 0) = 0:5pimt respectively. This is the first time that these types of hysteresis loops have been produced by any erosion model. The generation of these hysteresis loops are physically explainable in terms of sediment availability and is consistent with data obtained on the field scale.
|
108 |
Análise da interação maciço-suporte de túneis considerando o comportamento dependente do tempo / Tunnel\'s analysis considering time-dependent behaviour in the ground-support interactionGomes, Ricardo Adriano Martoni Pereira 26 April 1999 (has links)
A utilização de concreto projetado como suporte de túneis é uma prática amplamente difundida no mundo inteiro. Este tipo material possui a característica de começar a agir estruturalmente desde pequenas idades. Apesar disso, os correntes processos de dimensionamento de suportes negligenciam o desenvolvimento de suas propriedades com o tempo, em acoplamento aos efeitos tridimensionais da região onde se localiza a frente de escavação. O presente trabalho tem a finalidade de relatar os procedimentos utilizados na análise da influência de alguns parâmetros da interação maciço - suporte, sobre os esforços solicitantes e os deslocamentos radiais finais do suporte de um túnel, tanto para o caso de concreto projetado, com suas propriedades dependentes do tempo, quanto para materiais com propriedades constantes. São elaboradas soluções adimensionais para o problema da quantificação de esforços solicitantes no suporte e de deslocamentos radiais na interface entre maciço e suporte. Além disso, é proposta uma forma de se determinar, através destas soluções adimensionais, coeficientes de alívio de tensões que auxiliam em simulações bidimensionais de escavações subterrâneas. / The utilization of shotcrete as tunnel support is a widely diffused practice in the whole world. This kind of material has the feature of beginning to act structurally since early ages. Nevertheless, the current processes of support design neglect the development of its properties after some time in connection to the 3D effects of the region where the face of the tunnel is located. The present work relates the procedures adopted in analyzing the influence of some ground-support interaction parameters on the support internal forces and interface radial displacements of a tunnel, not only when shotcrete is used, with its time-dependent properties, but for materials with constant properties as well. Dimensionless solutions are developed for the support thrust and radial displacement quantification problem. Moreover, through this dimensionless solution, a way of quantifying stress relief factors, which are intermediate steps in 2D simulations of underground excavations, is proposed.
|
109 |
Comparing methods for modeling longitudinal and survival data, with consideration of mediation analysisNgwa, Julius S. 14 March 2016 (has links)
Joint modeling of longitudinal and survival data has received much attention and is becoming increasingly useful. In clinical studies, longitudinal biomarkers are used to monitor disease progression and to predict survival. These longitudinal measures are often missing at failure times and may be prone to measurement errors. In previous studies these two types of data are frequently analyzed separately where a mixed effects model is used for longitudinal data and a survival model is applied to event outcomes. The argument in favor of a joint model has been the efficient use of the data as the survival information goes into modeling the longitudinal process and vice versa.
In this thesis, we present joint maximum likelihood methods, a two stage approach and time dependent covariate methods that link longitudinal data to survival data. First, we use simulation studies to explore and assess the performance of these methods with bias, accuracy and coverage probabilities. Then, we focus on four time dependent methods considering models that are unadjusted and adjusted for time. Finally, we consider mediation analysis for longitudinal and survival data. Mediation analysis is introduced and applied in a research framework based on genetic variants, longitudinal measures and disease risk. We implement accelerated failure time regression using the joint maximum likelihood approach (AFT-joint) and an accelerated failure time regression model using the observed longitudinal measures as time dependent covariates (AFT-observed) to assess the mediated effect.
We found that the two stage approach (TSA) performed best at estimating the link parameter. The joint maximum likelihood methods that used the predicted values of the longitudinal measures, similar to the TSA, provided larger estimates. The time dependent covariate methods that used the observed longitudinal measures in the survival analysis underestimated the true estimates. The mediation results showed that the AFT-joint and the AFT-observed underestimated the mediated effect. Comparison of the methods in Framingham Heart Study data revealed similar patterns. We recommend adjusting for time when estimating the association parameter in time dependent Cox and logistic models. Additional work is needed for estimating the mediated effect with longitudinal and survival data.
|
110 |
Evolving graphs and similarity-based graphs with applicationsZhang, Weijian January 2018 (has links)
A graph is a mathematical structure for modelling the pairwise relations between objects. This thesis studies two types of graphs, namely, similarity-based graphs and evolving graphs. We look at ways to traverse an evolving graph. In particular, we examine the influence of temporal information on node centrality. In the process, we develop EvolvingGraphs.jl, a software package for analyzing time-dependent networks. We develop Etymo, a search system for discovering interesting research papers. Etymo utilizes both similarity-based graphs and evolving graphs to build a knowledge graph of research articles in order to help users to track the development of ideas. We construct content similarity-based graphs using the full text of research papers. And we extract key concepts from research papers and exploit the temporal information in research papers to construct a concepts evolving graph.
|
Page generated in 0.0761 seconds