• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 25
  • 19
  • 14
  • 11
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 301
  • 301
  • 103
  • 93
  • 44
  • 40
  • 40
  • 38
  • 27
  • 26
  • 23
  • 23
  • 22
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

USING A NATURALISTIC TIME DELAY TO INITIATE A REQUEST FOR PREFERRED OBJECTS FROM SAME AGED PEERS

Newton, Brian A. 01 January 2017 (has links)
The purpose of this study was to provide training to peer tutors in order to teach students with severe intellectual disability to initiate communication to obtain preferred objects. A multiple probe (days) across students was used to evaluate the effectiveness of the peer implementing a naturalistic time delay to teach the communication skill. Two of the four students were able to initiate communications with the peer tutors to use objects they preferred. One student showed increasing in responding prior to the implementation of the intervention. The results showed that the peers were able to maintain the instructional procedures to teach the skill.
122

Alternative oxidants and processing procedures for pyrotechnic time delays

Ricco, Isabel Maria Moreira 13 September 2005 (has links)
This study was directed at the pyrotechnic time delay compositions that are used in detonator assemblies. The objectives were to: --Investigate effective alternatives for the barium and lead-based oxidants currently used, maintaining the use of silicon as fuel --Develop easy to use, realistic measurement techniques for burn rates and shock tube ignitability --Determine the variables that affect burn rate, and --Evaluate alternative processing routes to facilitate intimate mixing of the component powders. Lead chromate and copper antimonite were found to be suitable oxidants for silicon in time delay compositions. They were ignitable by shock tubing, a relatively weak ignition source. The measured burn speeds for these systems showed a bimodal dependence on stoichiometry. Measured burn rates varied between 6-28 mm/s. Lead chromate is potentially a suitable alternative to the oxidant currently used in the medium burn rate commercial composition. It burns faster than copper antimonite. The latter is potentially a suitable replacement oxidant for the slow and medium compositions. Antimony trioxide-based compositions exhibited unreliable performance with respect to ignition with shock tubing. The addition of aluminium powder or fumed silica was found to reduce the burn rate. Increasing the silicon particle size (<3,5<font face="symbol">m</font>m) also decreased the burn speed for copper antimonite and lead chromate compositions. Addition of fumed silica improved the flow properties of the lead chromate, copper antimonite and antimony trioxide powders allowing for easier mixing. The silicon powder was found to react violently with water in alkaline solutions. This makes particle dispersion in a wet-mixing process problematic. / Dissertation (MEng (Chemical Engineering))--University of Pretoria, 2006. / Chemical Engineering / unrestricted
123

Supervisory wide-area control for multi-machine power system

Yang, Xue Jiao January 2012 (has links)
With the increasing demand for electrical power and the growing need for the restructuring of the power industry, electric power systems have become highly complex with inherent complicated dynamics. Therefore, the study of power system stability has continued to receive significant attention from both academic researchers and industrial practitioners. This thesis focuses on supervisory wide-area control for rotor angle stability of multi-machine power systems using Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) control theory with guaranteed robustness. The supervisory controllers are developed in both continuous-time and discrete-time framework and their performances and robustness are assessed using both frequency-domain tools, and time-domain simulation results. The impact of the communication time-delays that commonly exist in wide-area power system control on the performance and robustness of the closed-loop system is investigated. In particular, different methods of incorporating such time-delays into the design of the supervisory LQG controller are considered. This thesis proposes a modified supervisory LQG controller that utilizes the Extended Kalman Filter to estimate the unknown/varying time-delays. Simulation results obtained using numerical examples involving non-linear power system models demonstrate the benefits of the proposed scheme for both time-invariant and time-varying delays. The resulting supervisory control scheme is well suited for maintaining power system stability in the presence of communication time-delays.
124

Evaluation of Bi2O3 and Sb6O13 as oxidants for silicon fuel in time delay detonators

Kalombo, Lonji 19 August 2008 (has links)
This study considered bismuth (III) oxide (Bi2O3) and antimony hexitatridecoxide (Sb6O13) as potential substitutes for the red lead (Pb3O4) and barium sulphate (BaSO4) oxidants currently used in time delay compositions for detonator assemblies. Fine silicon powders with a specific surface area of 2 - 10 m2/g were used as fuels. Some experiments were also done with a coarse manganese powder as fuel. Bi2O3 was synthesised by the thermal decomposition of (BiO) 2CO3 by heating at 460°C for 15 hours. The yield was near quantitative, ie. close to the 91,4% expected based on the complete conversion of the carbonate to the oxide. Sb6O13 was obtained by heating colloidal antimony pentoxide (Sb2O5) for 8 hours at 315°C. This resulted in a ca. 20 % mass loss and yielded a reactive black powder. In the Si-Bi2O3 system, compositions in the range 5 - 40% by mass Si were ignitable with shock tubing. Burn rates measured in lead tubes varied between 15 and 155 mm/s. This highest burn rate was obtained with 20% silicon. Addition of additives such as KMnO4 and boric oxide had little effect on the burn rate. The fast burning Si-Bi2O3 system is a potential replacement for the commercial Si - red lead system. The burning rate decreased with increasing compaction of the samples. Burn rate also decreased when the aluminium instead of lead tubes were used. This is attributed to a greater heat loss with the former. The combustion products were characterised using DTA, FT-IR, XRD and SEM. The results show that the combustion reactions led to reduction of the oxidant to the corresponding metal form. The Sb6O13-Si system requires an initiating composition such as Bi2O3-50%Si (Type 4). It is slow burning and thus a possible replacement for the commercial BaS04-Si system. The lowest sustainable and reproducible burn rate, in the absence of additives, was 4,8 mm/s. It was achieved using 10% silicon Type 4. Adding small amounts of fumed silica <2%) increased the burn rate. This is attributed to better mixing and compaction. However, lower burn rates (~2 mm/s) are possible if more fumed silica is added as inert diluent. Replacing the silicon fuel with manganese powder gave more exothermic and even slower burning compositions. / Dissertation (MSc)--University of Pretoria, 2008. / Graduate School of Technology Management (GSTM) / unrestricted
125

Analysis of Tumor-Immune Dynamics in an Evolving Dendritic Cell Therapy Model

January 2020 (has links)
abstract: Cancer is a worldwide burden in every aspect: physically, emotionally, and financially. A need for innovation in cancer research has led to a vast interdisciplinary effort to search for the next breakthrough. Mathematical modeling allows for a unique look into the underlying cellular dynamics and allows for testing treatment strategies without the need for clinical trials. This dissertation explores several iterations of a dendritic cell (DC) therapy model and correspondingly investigates what each iteration teaches about response to treatment. In Chapter 2, motivated by the work of de Pillis et al. (2013), a mathematical model employing six ordinary differential (ODEs) and delay differential equations (DDEs) is formulated to understand the effectiveness of DC vaccines, accounting for cell trafficking with a blood and tumor compartment. A preliminary analysis is performed, with numerical simulations used to show the existence of oscillatory behavior. The model is then reduced to a system of four ODEs. Both models are validated using experimental data from melanoma-induced mice. Conditions under which the model admits rich dynamics observed in a clinical setting, such as periodic solutions and bistability, are established. Mathematical analysis proves the existence of a backward bifurcation and establishes thresholds for R0 that ensure tumor elimination or existence. A sensitivity analysis determines which parameters most significantly impact the reproduction number R0. Identifiability analysis reveals parameters of interest for estimation. Results are framed in terms of treatment implications, including effective combination and monotherapy strategies. In Chapter 3, a study of whether the observed complexity can be represented with a simplified model is conducted. The DC model of Chapter 2 is reduced to a non-dimensional system of two DDEs. Mathematical and numerical analysis explore the impact of immune response time on the stability and eradication of the tumor, including an analytical proof of conditions necessary for the existence of a Hopf bifurcation. In a limiting case, conditions for global stability of the tumor-free equilibrium are outlined. Lastly, Chapter 4 discusses future directions to explore. There still remain open questions to investigate and much work to be done, particularly involving uncertainty analysis. An outline of these steps is provided for future undertakings. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2020
126

EFFECTS OF NATURALISTIC TIME DELAY ON PROMOTING FUNCTIONAL REQUESTS USING AAC IN PRESCHOOLERS WITH AUTISM SPECTRUM DISORDERS

Rinaldi, Brianna 01 January 2019 (has links)
The purpose of this study was to teach preschool children with autism spectrum disorders to make requests with a speech generating device using a naturalistic time delay prompting procedure. The participants in this study were two males, enrolled in a public preschool program, between four and five years old. Both participants showed significant delays in expressive communication requiring alternative and augmented communication. The study utilized a multiple probe design across behaviors. Results showed utilizing naturalistic time delay increases independent requests using a speech generating device.
127

Appearance of Symmetry Breaking in AC/AC Converters and Its Recovery Methods / AC/ACコンバータにおける対称性破れの発生とその回復法

Manuel, Antonio Sánchez Tejada 24 September 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22069号 / 工博第4650号 / 新制||工||1725(附属図書館) / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 引原 隆士, 教授 松尾 哲司, 准教授 三谷 友彦 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
128

Investigation of PT symmetry breaking and exceptional points in delay-coupled semiconductor lasers

Andrew Ryan Wilkey (11209566) 06 August 2021 (has links)
This research investigates characteristics of PT (parity-time) symmetry breaking in a system of two optically-coupled, time-delayed semiconductor lasers. A theoretical rate equation model for the lasers’ electric fields is presented and then reduced to a 2x2 Hamiltonian model, which, in the absence of time-delay, is PT-symmetric. The important parameters we control are the temporal separation of the lasers (τ), the frequency detuning (∆ω), and the coupling strength (κ). The detuning is experimentally controlled by varying the lasers’ temperatures, and intensity vs. ∆ωbehavior are examined, specifically how the PT-transition and the period and amplitude of sideband intensity oscillations change withκandτ. Experiments are compared to analytic predictions and numerical results, and all are found to be in good agreement. Eigenvalues, eigenvectors, and exceptional points of the reduced Hamiltonian model are numerically and analytically investigated, specifically how nonzero delay affects existing exceptional points.
129

Investigation of PT Symmetry Breaking and Exceptional Points in Delay-coupled Semiconductor Lasers

Wilkey, Andrew 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This research investigates characteristics of PT (parity-time) symmetry breaking in a system of two optically-coupled, time-delayed semiconductor lasers. A theoretical rate equation model for the lasers' electric fields is presented and then reduced to a 2x2 Hamiltonian model, which, in the absence of time-delay, is PT-symmetric. The important parameters we control are the temporal separation of the lasers, the frequency detuning, and the coupling strength. The detuning is experimentally controlled by varying the lasers' temperatures, and intensity vs. detuning behavior are examined, specifically how the PT-transition and the period and amplitude of sideband intensity oscillations change with coupling and delay. Experiments are compared to analytic predictions and numerical results, and all are found to be in good agreement. Eigenvalues, eigenvectors, and exceptional points of the reduced Hamiltonian model are numerically and analytically investigated, specifically how nonzero delay affects existing exceptional points.
130

Způsoby zapalování jiskřišť / Methods of ignition spark gaps

Pekárek, Dominik January 2015 (has links)
This thesis deals with methods of spark gap ignition. The thesis describes spark gap ignition by external electrode, by Rogowski electrode and by lasers. Advantages and disadvantages of these methods are also discussed. In the final part of the thesis there is described experiment with high voltage spark gap.

Page generated in 0.0456 seconds