• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 22
  • 9
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 41
  • 29
  • 27
  • 23
  • 23
  • 23
  • 22
  • 20
  • 20
  • 19
  • 17
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Simplification de modèles éléments finis de structures à comportement dynamique de poutre.

Corn, Stéphane 26 November 1998 (has links) (PDF)
Une méthodologie générale de simplification de modèles éléments finis de structures à comportement de poutre est proposée dans ce mémoire. Elle concerne les structures mécaniques constituées de composants qui présentent un comportement dynamique global de poutre dans le domaine fréquentiel d'utilisation. C'est en particulier le cas des véhicules automobiles, dont l'ossature comporte des corps creux et des profilés modélisés finement par des éléments finis de type coque. Le principe de simplification mis en oeuvre consiste à remplacer le maillage fin de ces sous-structures par un modèle " équivalent " constitué d'éléments finis de poutre adéquats, réduisant ainsi de manière drastique la taille du modèle sans dégradation significative de sa précision. On propose une méthode originale permettant d'identifier de manière automatique tous les paramètres physiques à introduire dans le modèle équivalent, basé sur la formulation de Timoshenko et prenant en compte le couplage dynamique flexion-torsion. Les nombreux tests numériques présentés mettent en évidence les performances et la fiabilité de la stratégie élaborée. Son adaptation à des structures industrielles de forme complexe, ainsi que l'efficacité du logiciel d'application développé à cet effet, sont illustrées dans ce mémoire.
52

Dynamique transitoire des treillis de poutres soumis à des chargements impulsionnels

Le Guennec, Yves 04 February 2013 (has links) (PDF)
Ce travail de recherche est dédié à la simulation de la réponse transitoire des assemblages de poutres soumis à des chocs. De tels chargements entraînent la propagation d'ondes haute fréquence dans l'ensemble de la structure. L'énergie qu'elles transportent peut être dommageable pour son fonctionnement ou celui des équipements embarqués. Dans des études précédentes, il a été observé sur des structures expérimentales qu'un régime vibratoire diffusif tend à s'installer pour des temps longs. Le but de cette étude est donc de développer un modèle robuste de la réponse transitoire des assemblages de poutres soumis à des chocs permettant de simuler, entre autres, cet état diffusif. Les champs de déplacement étant très oscillants et la densité modale élevée, la simulation numérique de la réponse transitoire à des chocs peut difficilement être menée par une méthode d'éléments finis classique. Une approche utilisant un estimateur de la densité d'énergie de chaque mode de propagation a donc été mise en œuvre. Elle permet d'accéder à des informations locales sur les états vibratoires, et de contourner certaines limitations intrinsèques aux longueurs d'onde courtes. Après avoir comparé plusieurs modèles de réduction cinématique de poutre à un modèle de Lamb de propagation dans un guide d'ondes circulaire, la cinématique de Timoshenko a été retenue afin de modéliser le comportement mécanique haute fréquence des poutres. En utilisant ce modèle dans le cadre de l'approche énergétique évoquée plus haut, deux groupes de modes de propagation de la densité d'énergie vibratoire dans une poutre ont été isolés : des modes longitudinaux regroupant un mode de compression et des modes de flexion, et des modes transversaux regroupant des modes de cisaillement et un mode de torsion. Il peut être également montré que l''evolution en temps des densités d'énergie associées obéit à des lois de transport. Pour des assemblages de poutres, les phénomènes de réflexion/transmission aux jonctions ont du être pris en compte. Les opérateurs permettant de les décrire en termes de flux d''energie ont été obtenus grâce aux équations de continuité des déplacements et des efforts aux jonctions. Quelques caractéristiques typiques d'un régime haute fréquence ont été mises en évidence, tel que le découplage entre les modes de rotation et les modes de translation. En revanche, les champs de densité d'énergie sont quant à eux discontinus aux jonctions. Une méthode d'éléments finis discontinus a donc été développée afin de les simuler numériquement comme solutions d''equations de transport. Si l'on souhaite atteindre le régime diffusif aux temps longs, le schéma numérique doit être peu dissipatif et peu dispersif. La discrétisation spatiale a été faite avec des fonctions d'approximation de type spectrales, et l'intégration temporelle avec des schémas de Runge-Kutta d'ordre élevé du type "strong stability preserving". Les simulations numériques ont donné des résultats concluants car elles permettent d'exhiber le régime de diffusion. Il a été remarqué qu'il existait en fait deux limites diffusives différentes : (i) la diffusion spatiale de l''energie sur l'ensemble de la structure, et (ii) l'équirépartition des densités d'énergie entre les différents modes de propagation. Enfin, une technique de renversement temporel a été développée. Elle pourra être utile dans de futurs travaux sur le contrôle non destructif des assemblages complexes et de grandes tailles.
53

Nonlinear Analysis of Beams Using Least-Squares Finite Element Models Based on the Euler-Bernoulli and Timoshenko Beam Theories

Raut, Ameeta A. 2009 December 1900 (has links)
The conventional finite element models (FEM) of problems in structural mechanics are based on the principles of virtual work and the total potential energy. In these models, the secondary variables, such as the bending moment and shear force, are post-computed and do not yield good accuracy. In addition, in the case of the Timoshenko beam theory, the element with lower-order equal interpolation of the variables suffers from shear locking. In both Euler-Bernoulli and Timoshenko beam theories, the elements based on weak form Galerkin formulation also suffer from membrane locking when applied to geometrically nonlinear problems. In order to alleviate these types of locking, often reduced integration techniques are employed. However, this technique has other disadvantages, such as hour-glass modes or spurious rigid body modes. Hence, it is desirable to develop alternative finite element models that overcome the locking problems. Least-squares finite element models are considered to be better alternatives to the weak form Galerkin finite element models and, therefore, are in this study for investigation. The basic idea behind the least-squares finite element model is to compute the residuals due to the approximation of the variables of each equation being modeled, construct integral statement of the sum of the squares of the residuals (called least-squares functional), and minimize the integral with respect to the unknown parameters (i.e., nodal values) of the approximations. The least-squares formulation helps to retain the generalized displacements and forces (or stress resultants) as independent variables, and also allows the use of equal order interpolation functions for all variables. In this thesis comparison is made between the solution accuracy of finite element models of the Euler-Bernoulli and Timoshenko beam theories based on two different least-square models with the conventional weak form Galerkin finite element models. The developed models were applied to beam problems with different boundary conditions. The solutions obtained by the least-squares finite element models found to be very accurate for generalized displacements and forces when compared with the exact solutions, and they are more accurate in predicting the forces when compared to the conventional finite element models.
54

Adapting a Beam-Based Rotordynamics Model to Accept a General Three-Dimensional Finite-Element Casing Model

James, Stephen M. 2010 May 1900 (has links)
The subject of this thesis is an extension of a two-dimensional, axisymmetric, Timoshenko-beam finite-element rotordynamic code to include a three-dimensional non-axisymmetric solid-element casing model. Axisymmetric beams are sufficient to model rotors. Spring and damper forces provide the interface between the rotor and its casing and capture the dynamics of the full model. However, axisymmetric beams limit the modeling of real-case machine structures, where the casing is not axisymmetric. Axisymmetric and non-axisymmetric 3D finite element casing structures are modeled. These structures are then reduced using a technique called substructuring. Modal equations are developed for axisymmetric and non-axisymmetric casing models. In a 3D non-axisymmetric model, structural dynamics modes can be modeled by lateral modes in two orthogonal planes. Modal information of the complex 3D casing structures are generated, and then incorporated into the 2D code after a series of pre-processing steps. A reduction method called Component Mode Synthesis (CMS) is used to reduce the large dimensionality involved in calculation of rotordynamic coefficients. The results from the casing structures are merged with the rotor model to create a combined rotor-casing model. The analysis of the combined structure shows that there is a difference in the natural frequencies and unbalance response between the model that uses symmetrical casing and the one that uses non-axisymmetric casing. XLTRC2 is used as an example of a two-dimensional axisymmetric beam-element code. ANSYS is used as a code to build three-dimensional non-axisymmetric solid-element casing models. The work done in this thesis opens the scope to incorporate complex non-axisymmetric casing models with XLTRC2.
55

Analytical Study on Adhesively Bonded Joints Using Peeling Test and Symmetric Composite Models Based on Bernoulli-Euler and Timoshenko Beam Theories for Elastic and Viscoelastic Materials

Su, Ying-Yu 2010 December 1900 (has links)
Adhesively bonded joints have been investigated for several decades. In most analytical studies, the Bernoulli-Euler beam theory is employed to describe the behaviour of adherends. In the current work, three analytical models are developed for adhesively bonded joints using the Timoshenko beam theory for elastic material and a Bernoulli-Euler beam model for viscoelastic materials. One model is for the peeling test of an adhesively bonded joint, which is described using a Timoshenko beam on an elastic foundation. The adherend is considered as a Timoshenko beam, while the adhesive is taken to be a linearly elastic foundation. Three cases are considered: (1) only the normal stress is acting (mode I); (2) only the transverse shear stress is present (mode II); and (3) the normal and shear stresses co-exist (mode III) in the adhesive. The governing equations are derived in terms of the displacement and rotational angle of the adherend in each case. Analytical solutions are obtained for the displacements, rotational angle, and stresses. Numerical results are presented to show the trends of the displacements and rotational angle changing with geometrical and loading conditions. In the second model, the peeling test of an adhesively bonded joint is represented using a viscoelastic Bernoulli-Euler beam on an elastic foundation. The adherend is considered as a viscoelastic Bernoulli-Euler beam, while the adhesive is taken to be a linearly elastic foundation. Two cases under different stress history are considered: (1) only the normal stress is acting (mode I); and (2) only the transverse shear stress is present (mode II). The governing equations are derived in terms of the displacements. Analytical solutions are obtained for the displacements. The numerical results show that the deflection increases as time and temperature increase. The third model is developed using a symmetric composite adhesively bonded joint. The constitutive and kinematic relations of the adherends are derived based on the Timoshenko beam theory, and the governing equations are obtained for the normal and shear stresses in the adhesive layer. The numerical results are presented to reveal the normal and shear stresses in the adhesive.
56

A Hybrid-stress Nonuniform Timoshenko Beam Finite Element

Demirhisar, Umut 01 November 2007 (has links) (PDF)
In this thesis, a hybrid-stress finite element is developed for nonuniform Timoshenko beams. The element stiffness matrix is obtained by assuming a stress field only. Since element boundaries are simply the element nodes, a displacement assumption is not necessary. Geometric and mass stiffness matrices are obtained via equilibrium and kinematics of deformation equations which are derived in the beam arbitrary cross-section. Utilizing this method eliminates the displacement assumption for the geometric and mass stiffness matrices. The element has six degrees of freedom at each node. Axial, flexural and torsional effects are considered. The torsional and distortional warping effects are omitted. Deformations due to shear is also taken into account. Finally, some sample problems are solved with the element and results are compared with the solutions in the literature and commercial finite element programs (i.e. MSC/NASTRAN&reg / ).
57

Vibrações livres e forçadas no modelo de Timoshenko

Turcatto, Rosemari Barden January 2002 (has links)
O objetivo deste trabalho é o cálculo modal da resposta impulso distribu ída de uma viga descrita pela equação de Timoshenko e das vibrações forçadas, devidas a influência de cargas externas. Os modos vibratórios foram obtidos com o uso da base dinâmica, gerada por uma resposta livre e suas derivadas. Esta resposta é caracterizada por condições iniciais impulsivas. Simulações foram realizadas para os modos, a resposta impulso distribuída e vibrações forçadas em vigas apoiadas em uma extremidade e na outra livre, fixa, deslizante ou apoiada, sujeitas a cargas oscilatórias espacialmente concentradas ou distribuídas através de pulsos.
58

Geração de superfícies de interação pelo método da regressão linear múltipla com o modelo de dano em vigas de timoshenko 3D

Vieira, Pedro C. S. 08 1900 (has links)
Submitted by Pedro Cláudio Vieira (pcsvieira@gmail.com) on 2012-11-12T20:51:17Z No. of bitstreams: 1 TD006A04-PC.pdf: 1349795 bytes, checksum: 2714d85e7927b851ab85b60a19b689b6 (MD5) / Made available in DSpace on 2012-11-12T20:51:17Z (GMT). No. of bitstreams: 1 TD006A04-PC.pdf: 1349795 bytes, checksum: 2714d85e7927b851ab85b60a19b689b6 (MD5) Previous issue date: 2004-08 / CAPES / Na literatura técnica, existem formulações analíticas que trabalham com superfícies de interação em resultantes de tensões. Estes tipos de superfícies são importantes para evitar o processo de integração numérica, por exemplo na seção transversal, nas análises estruturais. Geralmente, as funções de escoamento f trabalham no espaço de tensões e dentro deste escopo, vê-se que a interação entre as tensões normal e tangencial pelo critério de Mises, aplicadas para os principais pontos de tensão numa seção metálica, é usualmente considerada como um limite para projetos elásticos de elementos resistentes. Expressões em tensões, que dependem dos esforços dados pela Resistência dos Materiais, permitem aplicações de condições limites de forma direta. Quando esta forma de critério é dada, a interação de surpefícies limites para trios de esforços aplicados resulta em planos, quádricas, surperfícies mais complexas, ou uma mistura destas. Técnicas que usam formulações analíticas são mais ou menos complexas e dependem de características, como por exemplo: combinação de tensões ou de esforços seccionais, e o tipo de seção analisada. Este trabalho apresenta uma técnica de geração de superfícies de interação em resultantes de tensões, através da regressão linear múltipla, usando modelo de dano em vigas de Timoshenko 3D com aplicações baseadas na análise elastoplástica de pórticos espaciais utilizando o conceito de rótula plástica e o método de backward Euler. Posteriormente, são apresentados e discutidos exemplos numéricos mostrando a eficácia da metodologia alternativa proposta. / Brasília/DF
59

Vibrações livres e forçadas no modelo de Timoshenko

Turcatto, Rosemari Barden January 2002 (has links)
O objetivo deste trabalho é o cálculo modal da resposta impulso distribu ída de uma viga descrita pela equação de Timoshenko e das vibrações forçadas, devidas a influência de cargas externas. Os modos vibratórios foram obtidos com o uso da base dinâmica, gerada por uma resposta livre e suas derivadas. Esta resposta é caracterizada por condições iniciais impulsivas. Simulações foram realizadas para os modos, a resposta impulso distribuída e vibrações forçadas em vigas apoiadas em uma extremidade e na outra livre, fixa, deslizante ou apoiada, sujeitas a cargas oscilatórias espacialmente concentradas ou distribuídas através de pulsos.
60

Comportamento assintótico para um Sistema de Timoshenko com História / Asymptotic Behavior for a Timoshenko System with History

Gil, Lazaro Santos 06 March 2015 (has links)
Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2015-11-16T09:36:12Z No. of bitstreams: 1 texto completo.pdf: 1517826 bytes, checksum: 5fdfda894297b30c1745df2c3743f095 (MD5) / Made available in DSpace on 2015-11-16T09:36:12Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1517826 bytes, checksum: 5fdfda894297b30c1745df2c3743f095 (MD5) Previous issue date: 2015-03-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / No presente trabalho estudamos o comportamento assintótico de um sistema dissipativo com aplicação a modelagem de materiais Viscosos. Mais especificamente, estudamos a existência, unicidade e comportamento assintótico de um sistema tipo-Timoshenko com dissipação dada pela história. Usamos semigrupo e prOpriedades do resolvente de seu gerador infinitesimal para mostrarmos a existência e unicidade de solução para o sistema, assim como o comportamento da solução. / In this paper we study the asymptotic behavior of a dissipative system vvith application to modeling of viscous materials. More specifically, vve study the existence, uniqueness and asymptotic behavior of a type-Timoshenko system dissipation given by history. We use semigroup and resolvent properties of its infinitesimal generator to show the existence and uniqueness of solution to the system and the solution behavior.

Page generated in 0.0246 seconds