81 |
Contribution à l'homogénéisation des structures périodiques unidimensionnelles : application en biomécanique à la structure axonémale du flagelle et des cils vibratilesToscano, Jérémy 18 December 2009 (has links) (PDF)
Les structures treillis constituées d'un nombre important de barres sont largement utilisées, notamment en génie civil. L'étude par éléments finis de telles structures se révèle très coûteuse dès que la maille répétitive du treillis est complexe. Il s'avère intéressant de réduire la taille du problème en définissant un milieu continu équivalent. L'objectif de la première partie de ce travail est de proposer, en se plaçant dans le cadre des méthodes d'homogénéisation des milieux périodiques, une poutre de Timoshenko équivalente à une structure périodique dont l'une des dimension est grande par rapport aux deux autres. Une des originalités réside dans l'étude de cellules de base non symétriques. Par ailleurs, on s'intéresse à la prise en compte de déformations libres (par exemple, d'origine thermique) apparaissant à l'échelle microscopique. La seconde partie est consacrée à l'étude de la structure axonémale du flagelle et des cils vibratiles. Il s'agit de proposer et valider un modèle pour cette structure biomécanique complexe et d'appliquer ensuite la méthode d'homogénéisation proposée
|
82 |
Estabilidade assintótica e numérica de sistemas dissipativos de vigas de Timoshenko e vigas de Bresse / Asymptotic and numerical stability for dissipative systems of timoshenko beams and bresse beamsAlmeida Junior, Dilberto da Silva 14 August 2009 (has links)
Made available in DSpace on 2015-03-04T18:57:54Z (GMT). No. of bitstreams: 1
dilberto.pdf: 3192288 bytes, checksum: c781d5e4d13d5a0028c8c410967fe213 (MD5)
Previous issue date: 2009-08-14 / Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior / In this thesis we study models of plane beams governed by Timoshenko s hypothesis and models of curved beams governed by Bresse s hypothesis in the presence of dissipative mechanism, which act partially on the rotation function in the transverse section or on the transverse displacement ones.
We realize an analytic study of these models and we show they are exponentially stable, if and only if, the velocities of wave propagations are equal. Such result is more interesting on the point of mathematical view whereas in the practice the velocities of wave propagations are never equal.
We study in the general case the polynomial stability property and we show the dissipative systems are stable and, in these situations, the decay rate can be improved according to the regularity of the initial data. In the specific cases of the models of curved beams, the differential factor is in the mathematical techniques we use, which they are much more sophisticated.
Finally we realize a numerical study of the dissipative models using semi-discrete and totally discrete models in finite differences, purposing to avoid the problem of shear locking and to we confirm the theoretical results developed here. / Neste trabalho estudamos modelos de vigas planas governados pelas hipóteses de Timoshenko e modelos de vigas curvas governados pelas hipóteses de Bresse, na presença de mecanismos dissipativos atuando parcialmente, quer sobre a função de rotação na seção transversal ou sobre a função de deslocamento transversal.
Desenvolvemos um estudo analítico desses modelos e mostramos que eles são exponencialmente estáveis se, e somente se, as velocidades de propagações de ondas são iguais. Este resultado é interessante do ponto de vista matemático, visto que na prática as velocidades de propagações de ondas nunca são iguais.
No caso geral, estudamos a propriedade de estabilidade polinomial e mostramos que os sistemas dissipativos são polinomialmente estáveis, com taxas de decaimento que podem ser melhoradas de acordo com a regularidade dos dados iniciais. Nos casos específficos dos modelos de vigas curvas, o fator diferencial reside nas técnicas matemáticas que aplicamos, as quais são muito mais sofisticadas.
Finalmente realizamos um estudo numérico dos modelos dissipativos usando modelos semidiscretos e totalmente discretos em diferenças finitas, com a preocupação de se evitar o problema de trancamento no cortante e para comprovarmos os resultados teóricos desenvolvidos nesta tese.
|
83 |
Problemas de contacto transversal, estacionário e dinâmico / Transverse contact problems steady and dynamicBaldez, Carlos Alessandro da Costa 27 August 2012 (has links)
Submitted by Maria Cristina (library@lncc.br) on 2016-11-09T13:12:11Z
No. of bitstreams: 1
TeseBaldez.pdf: 2205858 bytes, checksum: a23b2f1dea8d7cc85600e36fce5fb295 (MD5) / Approved for entry into archive by Maria Cristina (library@lncc.br) on 2016-11-09T13:12:29Z (GMT) No. of bitstreams: 1
TeseBaldez.pdf: 2205858 bytes, checksum: a23b2f1dea8d7cc85600e36fce5fb295 (MD5) / Made available in DSpace on 2016-11-09T13:12:40Z (GMT). No. of bitstreams: 1
TeseBaldez.pdf: 2205858 bytes, checksum: a23b2f1dea8d7cc85600e36fce5fb295 (MD5)
Previous issue date: 2012-08-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) / In this thesis we study the transverse contact problem to Timoshenko beam' to elastic and thermoelastic model, whose the vertical displacement is restricted, with Signorini's contact condition. We make the mathematical modelling and well-posed model. We consider the discrete model and we make the computational modelling to the problem. The main result this work is to model the transverse contact problem and to show the qualitative properties of solution, for example, the exponential decay for energy of the system. We obtain numeric convergence rates to numeric solutions, and that enabled us to obtain numerical and computationally properties. / Nesta tese estudamos o problema de contacto transversal de uma viga, de Timoshenko, com propriedades elástica e termoelástica, restrita ao seu movimento transversal, com condição de contacto do tipo Signorini. Fazemos a modelagem matemática do problema mostrando a boa colocação do modelo. Discretizamos o modelo e fazemos a modelagem computacional do problema. O ponto alto de nosso trabalho consiste em modelar o problema de contacto transversal e mostrar as propriedades qualitativas da solução como, por exemplo, o decaimento exponencial da energia. Obtemos taxa de convergência da solução numérica, com esse resultado, tornou-se possível obter as propriedades numéricas e computacionais.
|
84 |
Ondas planas e modais em sistemas distribuídos elétricos e mecânicosTolfo, Daniela de Rosso January 2017 (has links)
Neste trabalho, são caracterizadas as soluções do tipo ondas planas e modais de modelos matemáticos referentes à teoria de linhas de transmissão, com e sem perdas, e à teoria de vigas, modelo de Timoshenko e modelo não local de Eringen. Os modelos são formulados matricialmente, e as ondas em questão são determinadas em termos da base gerada pela resposta matricial fundamental de sistemas de equações diferenciais ordinárias de primeira, segunda e quarta ordem. A resposta matricial fundamental é utilizada numa forma fechada que envolve o acoplamento de um número finito de matrizes e uma função escalar geradora e suas derivadas. A função escalar geradora é bem comportada para mudanças em torno de frequências críticas e sua robustez é exibida através da técnica de Liouville. As ondas modais são decompostas em termos de uma parte que viaja para frente e uma parte que viaja para trás. Essa decomposição é utilizada para fornecer matrizes de reflexão e transmissão em descontinuidades e condições de contorno. No contexto das linhas de transmissão são consideradas uma junção de linhas com impedâncias características diferentes ou uma carga em uma extremidade da linha. Na teoria de Timoshenko são consideradas uma fissura ou condições de contorno em uma das extremidades. Exemplos numéricos com descontinuidade são considerados na viga. Na teoria de linhas de transmissão exemplos com multicondutores são considerados e observações são realizadas sobre a decomposição das ondas modais. No modelo não local de Eringen, para vigas bi-apoiadas é discutida a existência do segundo espectro de frequências. / Plane type solutions and modal waves of mathematical models, which refer to transmission lines theory, both lossless and lossy, and to beam theory, using both Timoshenko and nonlocal Eringen models, are being characterized in this work. The models are formulated in matrix form, and the waves are determined in terms of matrix basis generated by fundamental matrix response of systems of ordinary differential equations of first, second and fourth order. The fundamental matrix response is used in the closed-form, which involve the coupling between a number finite of matrices of a generating scalar function and its derivatives. The generating scalar function is well behaved for changes around critical frequencies and its robustness is exhibited through the Liouville technique. Modal waves are decomposed in forward and backward parts. This decomposition is used for providing reflection and transmission matrices when dealing with discontinuities and boundary conditions. In the context of transmission lines junction of lines with different characteristic impedances or a load at one end of the line are being considered. In Timoshenko’s theory the crack problem or boundary conditions at one end are also being considered. Numerical examples with discontinuities are considered in the context of beams. Numerical examples with discontinuities and boundary value problems were approached using modal wave decomposition. In transmission line theory examples with multiconductors are considered and observations are made about decomposition of the modal waves. In the nonlocal of Eringen model, for bi-supported beams, the existence of the second frequency spectrum is discussed.
|
85 |
Finite elements for modeling of localized failure in reinforced concreteJukic, Miha 13 December 2013 (has links) (PDF)
In this work, several beam finite element formulations are proposed for failure analysis of planar reinforced concrete beams and frames under monotonic static loading. The localized failure of material is modeled by the embedded strong discontinuity concept, which enhances standard interpolation of displacement (or rotation) with a discontinuous function, associated with an additional kinematic parameter representing jump in displacement (or rotation). The new parameters are local and are condensed on the element level. One stress resultant and two multi-layer beam finite elements are derived. The stress resultant Euler-Bernoulli beam element has embedded discontinuity in rotation. Bending response of the bulk of the element is described by elasto-plastic stress resultant material model. The cohesive relation between the moment and the rotational jump at the softening hinge is described by rigid-plastic model. Axial response is elastic. In the multi-layer beam finite elements, each layer is treated as a bar, made of either concrete or steel. Regular axial strain in a layer is computed according to Euler-Bernoulli or Timoshenko beam theory. Additional axial strain is produced by embedded discontinuity in axial displacement, introduced individually in each layer. Behavior of concrete bars is described by elastodamage model, while elasto-plasticity model is used for steel bars. The cohesive relation between the stress at the discontinuity and the axial displacement jump is described by rigid-damage softening model in concrete bars and by rigid-plastic softening model in steel bars. Shear response in the Timoshenko element is elastic. Finally, the multi-layer Timoshenko beam finite element is upgraded by including viscosity in the softening model. Computer code implementation is presented in detail for the derived elements. An operator split computational procedure is presented for each formulation. The expressions, required for the local computation of inelastic internal variables and for the global computation of the degrees of freedom, are provided. Performance of the derived elements is illustrated on a set of numerical examples, which show that the multi-layer Euler-Bernoulli beam finite element is not reliable, while the stress-resultant Euler-Bernoulli beam and the multi-layer Timoshenko beam finite elements deliver satisfying results.
|
86 |
A small perturbation based optimization approach for the frequency placement of high aspect ratio wingsGoltsch, Mandy 26 March 2009 (has links)
Design denotes the transformation of an identified need to its physical embodiment in a traditionally iterative approach of trial and error. Conceptual design plays a prominent role but an almost infinite number of possible solutions at the outset of design necessitates fast evaluations. The traditional practice of empirical databases loses adequacy for novel concepts and an ever increasing system complexity and resource scarsity mandate new approaches to adequately capture system characteristics.
Contemporary concerns in atmospheric science and homeland security created an operational need for unconventional configurations. Unmanned long endurance flight at high altitudes offers a unique showcase for the exploration of new design spaces and the incidental deficit of conceptual modeling and simulation capabilities.
The present research effort evolves around the development of an efficient and accurate optimization algorithm for high aspect ratio wings subject to natural frequency constraints. Foundational corner stones are beam dimensional reduction and modal perturbation redesign. Local and global analyses inherent to the former suggest corresponding levels of local and global optimization. The present approach departs from this suggestion. It introduces local level surrogate models to capacitate a methodology that consists of multi level analyses feeding into a single level optimization.
The innovative heart of the new algorithm originates in small perturbation theory. A sequence of small perturbation solutions allows the optimizer to make incremental movements within the design space. It enables a directed search that is free of costly gradients. System matrices are decomposed based on a Timoshenko stiffness effect separation. The formulation of respective linear changes falls back on surrogate models that approximate cross sectional properties. Corresponding functional responses are readily available. Their direct use by the small perturbation based optimizer ensures constitutive laws and eliminates a previously necessary optimization at the local level. The great economy of the developed algorithm makes it suitable for the conceptual phase of aircraft design.
|
87 |
Ondas planas e modais em sistemas distribuídos elétricos e mecânicosTolfo, Daniela de Rosso January 2017 (has links)
Neste trabalho, são caracterizadas as soluções do tipo ondas planas e modais de modelos matemáticos referentes à teoria de linhas de transmissão, com e sem perdas, e à teoria de vigas, modelo de Timoshenko e modelo não local de Eringen. Os modelos são formulados matricialmente, e as ondas em questão são determinadas em termos da base gerada pela resposta matricial fundamental de sistemas de equações diferenciais ordinárias de primeira, segunda e quarta ordem. A resposta matricial fundamental é utilizada numa forma fechada que envolve o acoplamento de um número finito de matrizes e uma função escalar geradora e suas derivadas. A função escalar geradora é bem comportada para mudanças em torno de frequências críticas e sua robustez é exibida através da técnica de Liouville. As ondas modais são decompostas em termos de uma parte que viaja para frente e uma parte que viaja para trás. Essa decomposição é utilizada para fornecer matrizes de reflexão e transmissão em descontinuidades e condições de contorno. No contexto das linhas de transmissão são consideradas uma junção de linhas com impedâncias características diferentes ou uma carga em uma extremidade da linha. Na teoria de Timoshenko são consideradas uma fissura ou condições de contorno em uma das extremidades. Exemplos numéricos com descontinuidade são considerados na viga. Na teoria de linhas de transmissão exemplos com multicondutores são considerados e observações são realizadas sobre a decomposição das ondas modais. No modelo não local de Eringen, para vigas bi-apoiadas é discutida a existência do segundo espectro de frequências. / Plane type solutions and modal waves of mathematical models, which refer to transmission lines theory, both lossless and lossy, and to beam theory, using both Timoshenko and nonlocal Eringen models, are being characterized in this work. The models are formulated in matrix form, and the waves are determined in terms of matrix basis generated by fundamental matrix response of systems of ordinary differential equations of first, second and fourth order. The fundamental matrix response is used in the closed-form, which involve the coupling between a number finite of matrices of a generating scalar function and its derivatives. The generating scalar function is well behaved for changes around critical frequencies and its robustness is exhibited through the Liouville technique. Modal waves are decomposed in forward and backward parts. This decomposition is used for providing reflection and transmission matrices when dealing with discontinuities and boundary conditions. In the context of transmission lines junction of lines with different characteristic impedances or a load at one end of the line are being considered. In Timoshenko’s theory the crack problem or boundary conditions at one end are also being considered. Numerical examples with discontinuities are considered in the context of beams. Numerical examples with discontinuities and boundary value problems were approached using modal wave decomposition. In transmission line theory examples with multiconductors are considered and observations are made about decomposition of the modal waves. In the nonlocal of Eringen model, for bi-supported beams, the existence of the second frequency spectrum is discussed.
|
88 |
Ondas planas e modais em sistemas distribuídos elétricos e mecânicosTolfo, Daniela de Rosso January 2017 (has links)
Neste trabalho, são caracterizadas as soluções do tipo ondas planas e modais de modelos matemáticos referentes à teoria de linhas de transmissão, com e sem perdas, e à teoria de vigas, modelo de Timoshenko e modelo não local de Eringen. Os modelos são formulados matricialmente, e as ondas em questão são determinadas em termos da base gerada pela resposta matricial fundamental de sistemas de equações diferenciais ordinárias de primeira, segunda e quarta ordem. A resposta matricial fundamental é utilizada numa forma fechada que envolve o acoplamento de um número finito de matrizes e uma função escalar geradora e suas derivadas. A função escalar geradora é bem comportada para mudanças em torno de frequências críticas e sua robustez é exibida através da técnica de Liouville. As ondas modais são decompostas em termos de uma parte que viaja para frente e uma parte que viaja para trás. Essa decomposição é utilizada para fornecer matrizes de reflexão e transmissão em descontinuidades e condições de contorno. No contexto das linhas de transmissão são consideradas uma junção de linhas com impedâncias características diferentes ou uma carga em uma extremidade da linha. Na teoria de Timoshenko são consideradas uma fissura ou condições de contorno em uma das extremidades. Exemplos numéricos com descontinuidade são considerados na viga. Na teoria de linhas de transmissão exemplos com multicondutores são considerados e observações são realizadas sobre a decomposição das ondas modais. No modelo não local de Eringen, para vigas bi-apoiadas é discutida a existência do segundo espectro de frequências. / Plane type solutions and modal waves of mathematical models, which refer to transmission lines theory, both lossless and lossy, and to beam theory, using both Timoshenko and nonlocal Eringen models, are being characterized in this work. The models are formulated in matrix form, and the waves are determined in terms of matrix basis generated by fundamental matrix response of systems of ordinary differential equations of first, second and fourth order. The fundamental matrix response is used in the closed-form, which involve the coupling between a number finite of matrices of a generating scalar function and its derivatives. The generating scalar function is well behaved for changes around critical frequencies and its robustness is exhibited through the Liouville technique. Modal waves are decomposed in forward and backward parts. This decomposition is used for providing reflection and transmission matrices when dealing with discontinuities and boundary conditions. In the context of transmission lines junction of lines with different characteristic impedances or a load at one end of the line are being considered. In Timoshenko’s theory the crack problem or boundary conditions at one end are also being considered. Numerical examples with discontinuities are considered in the context of beams. Numerical examples with discontinuities and boundary value problems were approached using modal wave decomposition. In transmission line theory examples with multiconductors are considered and observations are made about decomposition of the modal waves. In the nonlocal of Eringen model, for bi-supported beams, the existence of the second frequency spectrum is discussed.
|
89 |
Modification of Aeroelastic Model for Vertical Axes Wind TurbinesRastegar, Damoon January 2013 (has links)
In wind turbines, flow pressure variations on the air-structure interface cause aerodynamic forces. Consequently the structure deforms and starts to move. The interaction between aerodynamic forces and structural deformations mainly concerns aeroelasticity. Since these two are coupled, they have to be considered simultaneously in cases which the deformations are not negligible in comparison to the other geometric dimensions. The purpose of this work is to improve the simulation model of a vertical axis wind turbine by modifying the structural model from undamped Euler-Bernoulli beam theory with lumped mass matrix to the more advanced Timoshenko beam theory with consistent mass matrix plus an additional damping term. The bending of the beam is then unified with longitudinal and torsional deformations based on a fixed shape cross-section assumption and the Saint-Venant torsion theory. The whole work has been carried out by implementing the finite element method using MATLAB code and implanting it in a previously developed package as a complement. Finally the results have been verified by qualitative comparisons with alternative simulations.
|
90 |
Closed-form Solutions For Rotating And Non-rotating Beams : An Inverse Problem ApproachSarkar, Korak 09 1900 (has links) (PDF)
Rotating Euler-Bernoulli beams and non-homogeneous Timoshenko beams are widely used to model important engineering structures. Hence the vibration analyses of these beams are an important problem from a structural dynamics point of view. The governing differential equations of both these type of beams do not yield any simple closed form solutions, hence we look for the inverse problem approach in determining the beam property variations given certain solutions.
Firstly, we look for a rotating beam, with pinned-free boundary conditions, whose eigenpair (frequency and mode-shape) is same as that of a uniform non-rotating beam for a particular mode. It is seen that for any given mode, there exists a flexural stiffness function (FSF) for which the ith mode eigenpair of a rotating beam with uniform mass distribution, is identical to that of a corresponding non-rotating beam with same length and mass distribution. Inserting these derived FSF's in a finite element code for a rotating pinned-free beam, the frequencies and mode shapes of a non-rotating pinned-free beam are obtained. For the first mode, a physically realistic equivalent rotating beam is possible, but for higher modes, the FSF has internal singularities. Strategies for addressing these singularities in the FSF for finite element analysis are provided. The proposed functions can be used as test functions for rotating beam codes and also for targeted destiffening of rotating beams.
Secondly, we study the free vibration of rotating Euler-Bernoulli beams, under cantilever boundary condition. For certain polynomial variations of the mass per unit length and the flexural stiffness, there exists a fundamental closed form solution to the fourth order governing differential equation. It is found that there are an infinite number of rotating beams, with various mass per unit length variations and flexural stiffness distributions, which share the same fundamental frequency and mode shape. The derived flexural stiffness polynomial functions are used as test functions for rotating beam numerical codes. They are also used to design rotating cantilever beams which may be required to vibrate with a particular frequency.
Thirdly, we study the free vibration of non-homogeneous Timoshenko beams, under fixed-fixed and fixed-hinged boundary conditions. For certain polynomial variations of the material mass density, elastic modulus and shear modulus, there exists a fundamental closed form solution to the coupled second order governing differential equations. It is found that there are an infinite number of non-homogeneous Timoshenko beams, with various material mass density, elastic modulus and shear modulus distributions, which share the same fundamental frequency and mode shape. They can be used to design non-homogeneous Timoshenko beams which may be required for certain engineering applications.
|
Page generated in 0.0142 seconds