Spelling suggestions: "subject:"itanium oxide"" "subject:"itanium óxide""
41 |
EFFECTS OF PROCESSING ON PTCR BARIUM TITANATE SYSTEMS WITH BARIUM OXIDE AND TITANIUM OXIDE ADDITIONS IN THE NEAR STOICHIOMETRIC REGIONSUBRAMANIAM, SRINIVAS 17 April 2003 (has links)
No description available.
|
42 |
Dye Sensitization in a Photoelectrochemical Water-Splitting Cell Using N,N'-Bis(3-phosphonopropyl)-3,4,9,10-perylenedicarboximideEmig, Andrew James 20 September 2012 (has links)
No description available.
|
43 |
Studies On CVD And ALD Of Thin Films Of Substituted And Composite Metal Oxides, Including Potential High-k DielectricsGairola, Anshita 09 1900 (has links) (PDF)
The work carried out as a part of this thesis has been focussed on understanding different aspects of the chemical vapor deposition process namely, ALD / MOCVD. A large part of the thesis is aimed at solving the problem of a single-source precursor for the MOCVD process to obtain substituted metal oxide thin films. For a chemical vapor deposition technique, it is important to understand the requisite salient features of precursor for deposition of thin films. For this purpose, not only is the structural characterization of the chemical precursor is required but also an in-depth thermal analysis of the precursor to know its vapor pressure. Vapor pressure of a metalorganic complex is one of the important properties to evaluate the applicability of a metalorganic complex as a MOCV/ALD precursor. The thesis discusses a novel approach to use thermal analysis as a tool to gauge the viability of substituted metal “single source” precursor for MOCVD/ALD. The other half deals with material characterization of thin films grown by an ALD process using hydrogen and Ti(OiPr)2(tbob)2 as precursors. The films were further studied for their potential application as high-k dielectric in DRAM applications.
The first chapter is an overview of topics that are relevant to the work carried out in this thesis. The chapter focuses on the description of techniques used for thin film deposition. A detailed review of CVD-type techniques (ALD/ MOCVD) is then given. Chapter1 reviews the various process parameters involved in ALD,i.e. film growth(specifically as a function of the reactant pulse length, the nature of the chemical reactant/precursor and that of the metal precursor, and purge length) and growth temperature. Following the discussion of ALD, CVD and its growth kinetics are also discussed. Chapter 1 then outlines a holistic understanding of precursors, followed the differences in requirement for using them in ALD and MOCVD. Further, an introduction to the titanium oxide (Stoichiometric titanium dioxide and various Magneli phases) system, its phase diagram, oxide properties and their applications is given. Chapter 1 concludes by delineating the scope of the work carried out which is presented in the thesis.
The second chapter deals with the synthesis of a series of substituted metal “single source” precursors to be used for MOCVD of substituted metal oxides thin films. The precursor complexes were of the type AlxCr1-x (acac)3 where 0<x<1. The complexes were synthesized using the novel approach of co-synthesis and were characterized by various spectroscopic techniques. Single crystal X-ray diffraction at low temperature was carried out to understand the substitution of metal in the complex crystallographically.
The substituted metal complexes synthesized and characterized in chapter 2 were further evaluated for their viability as single source precursors for MOCVD application, using thermo-gravimetry as discussed in chapter 3. Vapor pressure of these complexes was determined by using the Langmuir equation, while the enthalpies of submission and evaporation were calculated using the Clausius-Clapeyron equation. One of the composition of the series of substituted metal complexes, viz., Al0.9Cr0.1(acac)3, was employed on MOCVD reactor as precursor to obtain thin films on three substrates, Si(100), fused silica, and polycrystalline x- alumina, simultaneously. The resultant thin films were characterized using XRD, electron microscopy, FTIR, EDS, X-ray mapping, and UV-vis spectroscopy.
Chapter 4 deals with the growth of titanium oxide thin films using ALD. The metal precursor used was Ti(OiPr)2(tbob)2 and the reactant gas was hydrogen. Hydrogen, a reducing gas, was deliberately used to obtain the reduced defect oxide phases of titanium, commonly called Magneli phases. The growth rate of films grown on p-Si(100) was studied with respect to the substrate temperature, vaporizer temperature, pulse duration of metal precursor and pulse duration of the reactive gas. Also, the concept of complementarity of a reaction and self-limiting behavior in a true ALD process was illustrated. The deposition conditions such as substrate temperature and reactive gas flows have been varied to optimize the phase content and the morphology of the films. The films grown were characterized to determine the various phases of titanium oxide present using XRD, TEM, FTIR spectroscopy, Raman spectroscopy, and UV-vis spectroscopy. The presence of carbon was revealed by Raman spectroscopy. By using these characterization techniques, it was concluded that the film grown is a composite made of stiochiometric TiOx matrix embedded with crystallites of (reduced) Magneli phases.
Chapter 5 deals with the electrical properties of the composite thin films grown in chapter 4. the films behave as percolative capacitor which could be used for application as novel high-k dielectric material for DRAM. The effect of change in flow rates of reactive gas (H2) on the dielectric constant (k) and leakage current of the film were studied. It was found that phase composition of the film plays an important role in tuning the dielectric properties of the film was also studied. The effect of thickness of the film also studied on the dielectric properties of the film. The trend observed was correlated to the morphology of the film as a function of its thickness and the grain growth mechanism as observed from high resolution scanning electron microscopy. Further, the effect of change in substrate temperature, metal precursor pulse length, and of the metal used as top electrode, on C-V and I-V characteristics were studied. It was interesting to see that the presence of the more conductingTi5O9 (than Ti3O5) enhances the dielectric constant, which is a requisite for a high-k material for DRAM application. On the other hand, the presence of Ti5O9 also increased the leakage current in the film, which was not desirable.
It therefore suggested itself that an optimum embedment of Ti5O9 in the composite helps in enhancing the dielectric constant, while maintaining a low leakage current. Under optimum conditions, a dielectric constant of 210 at 1MHz was measured with a leakage current of 17 nA. The effect of the presence of carbon in the film was studied using Raman Spectroscopy, and it was found that a high leakage was associated with films having greater carbon content. In this chapter, electrical properties of composite thin films were also compared with those of stoichiometric titanium dioxide (a known dielectric). Further, a multilayer sandwich structure was proposed, such that it had a 53 mm thick stoichiometric TiO2 layer followed by 336nm thick composite film and again a 53nm thick stoichiometric titanium dioxide layer. The dielectric characteristics of this structure were found to be better than those of either of the other two.viz., stoichiometric titanium dioxide film or the composite thin film of titanium oxide.
|
44 |
Sol-Gel Processed Amorphous LiLaTiO3 as Solid Electrolyte for Lithium Ion BatteriesZheng, Zhangfeng 13 May 2015 (has links)
Rechargeable lithium ion batteries have been widely used in portable consumer electronic devices, hybrid and full electric vehicles, and emergency power supply systems, because of their high energy density and long lifespan. The lithium ion battery market was approximately $11.8 billion in 2010 and is expected to grow to $53.7 billion in 2020. However, there is an intrinsic safety issue in these batteries because electrolyte contains a flammable organic solvent which may cause fire and/or even explosion. All solid-state lithium ion battery is recognized as next-generation technology for rechargeable power sources due to improved safety, high energy density, and long cycle life. Inorganic solid electrolyte replace liquid one to eliminate flammable components. The major challenge for all solid-state lithium ion batteries is to develop solid electrolytes with high ionic conductivity and good stability against both electrodes. Amorphous lithium lanthanum titanium oxide (LLTO) is very promising as solid electrolyte owing to its high ionic conductivity, good stability, and wide electrochemical stability window. In this work, amorphous LLTO thin films (or powders) were successfully prepared by sol-gel process. The thin films are smooth and crack-free. The microstructure evolution from dried gel film to fired film to annealed film was examined. The microstructure of the annealed film, either amorphous or crystalline, depends on the annealing temperature and time. Theoretical analysis was conducted to understand the microstructure evolution. Induction time determines the longest annealing time without transformation from amorphous to crystalline state. The induction time decreases with annealing temperature until the time approaches a minimum, and after that, the time increases with the temperature. Ion transport properties were investigated by Electrochemical Impedance Spectroscopy (EIS). The plateau at low frequencies results from lithium ion long-range diffusion which contributes to dc conductivity, while the observed frequency dispersion at high frequencies is attributed to short-range forward¨Cbackward hopping motion of lithium ions. The relaxation processes are non-Debye in nature. Amorphous LLTO is compatible with Li metal due to its disordered atomic configuration. Finally, a 3D structure of electrode with amorphous LLTO was successfully prepared. This electrode displays promising electrochemical performance.
|
45 |
Estudo de camadas dielétricas para aplicação em capacitores MOS. / Study of dielectric layers for MOS capacitors.Kátia Franklin Albertin 04 October 2007 (has links)
Foram estudados filmes de oxinitreto de silício obtidos por PECVD à 320°C, a partir da mistura gasosa de N2O+SiH4+He, com diferentes valores de pressão e potência de deposição com o objetivo de produzir boa qualidade de interface deste material com o Si e de obter uma baixa densidade de carga efetiva visando a aplicação desses filmes em dispositivos semicondutores MOS. Os resultados mostraram que com uma pressão de deposição de 0,160 mbar e potências menores que 125 W/cm2 é possível obter um valor de densidade de estados de interface (Dit) de 4x1010 eV-1.cm-2, campo elétrico de ruptura (Ebd) de 13 MV/cm, valores comparáveis ao SiO2 térmico e uma densidade de carga efetiva (Nss) de 4x1011 cm-2. Segundo resultados experimentais esse valor de Nss é o mínimo possível que se pode atingir com a limpeza química utilizada em nosso laboratório. Pode-se dizer que estes são resultados bastante interessantes considerando que se trata de um material obtido por PECVD à baixa temperatura, porém viável para aplicação em dispositivos MOS. Iniciando os estudos com dielétricos de maiores valores de constante dielétrica optamos por estudar filmes de TiOx (k=40-100), obtidos por sputtering reativo, a partir da mistura gasosa de Ar+O2 e utilizando alvo de Ti. Foram fabricados capacitores MOS com estes filmes e obteve-se valores de constante dielétrica que variaram de 40-160. Porém esses materiais ainda apresentavam valores apreciáveis de corrente de fuga que foram minimizadas em ordens de grandeza quando utilizados dielétricos de dupla camada com SiO2 ou SiOxNy (otimizado neste trabalho) na interface, além de se observar uma melhora significativa da qualidade de interface. Utilizando dupla camada dielétrica com filmes de SiOxNy e SiO2, ainda espessos (³ 1nm) para camada intermediária, obteve-se uma constante dielétrica efetiva em torno de 20. Vale ressaltar que os dois filmes SiOxNy e TiOx, conseqüentemente a dupla camada, foram fabricados a baixas temperaturas. / Silicon oxynitride films obtained by the PECVD technique from N2O+SiH4+He gaseous mixtures, at 320°C, with different deposition pressure and RF power were studied intending to improve the interface quality with Si, decreasing the effective charge density and the interface state density in order to utilize them in MOS semiconductor devices. The results showed that with a deposition pressure of 0.160 mbar and a RF power density lower than 125 W/cm2 it is possible to obtain interface state density (Dit) values of 4x1010 eV-1.cm-2, Electrical Breakdown (Ebd) of 13 MV/cm, comparable with the obtained for thermally grown SiO2 , and an effective charge density (Nss) of 4x1011 cm-2. According with experimental results this Nss value is the minimum attainable with our chemical cleaning process. In this way it can be said that these results are very promising, considering that these materials were obtained by PECVD at low temperatures, but still viable for MOS devices application. In order to initiate studies with high dielectrics constant material, TiOx films (k= 40-180), obtained by reactive sputtering through the Ar+O2 gaseous mixture utilizing a Ti target, were chosen. MOS capacitors with these films were fabricated and dielectric constant values varying from 40 to 160 were obtained. However, until now, these materials have presented appreciable leakage current values, which were, minimize by orders of magnitude with the addition of a thin SiO2 or SiOxNy (optimized in this work) layer at the interface were utilized. This thin layer also resulted in a significant improvement of the interface quality. Utilizing double dielectric layer with SiOxNy or SiO2, still thick (³ 1nm) as intermediate layer a dielectric constant value of 20 was obtained. Its important to mention that the SiOxNy and TiOx films, and consequently the double layer, were deposited at low temperatures.
|
46 |
Estudo de camadas dielétricas para aplicação em capacitores MOS. / Study of dielectric layers for MOS capacitors.Albertin, Kátia Franklin 04 October 2007 (has links)
Foram estudados filmes de oxinitreto de silício obtidos por PECVD à 320°C, a partir da mistura gasosa de N2O+SiH4+He, com diferentes valores de pressão e potência de deposição com o objetivo de produzir boa qualidade de interface deste material com o Si e de obter uma baixa densidade de carga efetiva visando a aplicação desses filmes em dispositivos semicondutores MOS. Os resultados mostraram que com uma pressão de deposição de 0,160 mbar e potências menores que 125 W/cm2 é possível obter um valor de densidade de estados de interface (Dit) de 4x1010 eV-1.cm-2, campo elétrico de ruptura (Ebd) de 13 MV/cm, valores comparáveis ao SiO2 térmico e uma densidade de carga efetiva (Nss) de 4x1011 cm-2. Segundo resultados experimentais esse valor de Nss é o mínimo possível que se pode atingir com a limpeza química utilizada em nosso laboratório. Pode-se dizer que estes são resultados bastante interessantes considerando que se trata de um material obtido por PECVD à baixa temperatura, porém viável para aplicação em dispositivos MOS. Iniciando os estudos com dielétricos de maiores valores de constante dielétrica optamos por estudar filmes de TiOx (k=40-100), obtidos por sputtering reativo, a partir da mistura gasosa de Ar+O2 e utilizando alvo de Ti. Foram fabricados capacitores MOS com estes filmes e obteve-se valores de constante dielétrica que variaram de 40-160. Porém esses materiais ainda apresentavam valores apreciáveis de corrente de fuga que foram minimizadas em ordens de grandeza quando utilizados dielétricos de dupla camada com SiO2 ou SiOxNy (otimizado neste trabalho) na interface, além de se observar uma melhora significativa da qualidade de interface. Utilizando dupla camada dielétrica com filmes de SiOxNy e SiO2, ainda espessos (³ 1nm) para camada intermediária, obteve-se uma constante dielétrica efetiva em torno de 20. Vale ressaltar que os dois filmes SiOxNy e TiOx, conseqüentemente a dupla camada, foram fabricados a baixas temperaturas. / Silicon oxynitride films obtained by the PECVD technique from N2O+SiH4+He gaseous mixtures, at 320°C, with different deposition pressure and RF power were studied intending to improve the interface quality with Si, decreasing the effective charge density and the interface state density in order to utilize them in MOS semiconductor devices. The results showed that with a deposition pressure of 0.160 mbar and a RF power density lower than 125 W/cm2 it is possible to obtain interface state density (Dit) values of 4x1010 eV-1.cm-2, Electrical Breakdown (Ebd) of 13 MV/cm, comparable with the obtained for thermally grown SiO2 , and an effective charge density (Nss) of 4x1011 cm-2. According with experimental results this Nss value is the minimum attainable with our chemical cleaning process. In this way it can be said that these results are very promising, considering that these materials were obtained by PECVD at low temperatures, but still viable for MOS devices application. In order to initiate studies with high dielectrics constant material, TiOx films (k= 40-180), obtained by reactive sputtering through the Ar+O2 gaseous mixture utilizing a Ti target, were chosen. MOS capacitors with these films were fabricated and dielectric constant values varying from 40 to 160 were obtained. However, until now, these materials have presented appreciable leakage current values, which were, minimize by orders of magnitude with the addition of a thin SiO2 or SiOxNy (optimized in this work) layer at the interface were utilized. This thin layer also resulted in a significant improvement of the interface quality. Utilizing double dielectric layer with SiOxNy or SiO2, still thick (³ 1nm) as intermediate layer a dielectric constant value of 20 was obtained. Its important to mention that the SiOxNy and TiOx films, and consequently the double layer, were deposited at low temperatures.
|
47 |
CVD and ALD in the Bi-Ti-O systemSchuisky, Mikael January 2000 (has links)
<p>Bismuth titanate Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>, is one of the bismuth based layered ferroelectric materials that is a candidate for replacing the lead based ferroelectric materials in for instance non-volatile ferroelectric random access memories (FRAM). This is due to the fact that the bismuth based ferroelectrics consists of pseudo perovskite units sandwiched in between bismuth oxide layers, which gives them a better fatigue nature.</p><p>In this thesis thin films of Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12 </sub>have been deposited by chemical vapour deposition (CVD) using the metal iodides, BiI<sub>3</sub> and TiI<sub>4</sub> as precursors. Films grown on MgO(001) substrates were found to grow epitaxially. The electrical properties were determined for films grown on Pt-coated silicon and good properties such as a high dielectric constant (ε) of 200, low <i>tan</i> δ of 0.018, a remnant polarisation (<i>P</i><sub>r</sub>) of 5.3 μC/cm<sup>2</sup> and coercive field (E<sub>c</sub>) as high as 150 kV/cm were obtained. Thin films in the Bi-Ti-O system were also deposited by atomic layer deposition (ALD) using metalorganic precursors.</p><p>In addition to the ternary bismuth titanates, films in the binary oxide systems <i>i.e.</i> bismuth oxides and titanium oxides were deposited. Epitaxial TiO<sub>2</sub> films were deposited both by CVD and ALD using TiI<sub>4</sub> as precursor. The rutile films deposited by ALD were found to grow epitaxially down to a temperature of at least 375 ¢ªC on α-A1<sub>2</sub>O<sub>3</sub>(0 1 2) substrates. The TiO<sub>2</sub> ALD process was also studied <i>in-situ</i> by QCM. Different bismuth oxides were deposited by halide-CVD using BiI<sub>3</sub> as precursor on MgO(0 0 1) and SrTiO<sub>3</sub>(0 0 1) substrates and the results were summarised in an experimental CVD stability diagram. The Bi<sub>2</sub>O<sub>2.33</sub> phase was found to grow epitaxially on both substrates.</p>
|
48 |
CVD and ALD in the Bi-Ti-O systemSchuisky, Mikael January 2000 (has links)
Bismuth titanate Bi4Ti3O12, is one of the bismuth based layered ferroelectric materials that is a candidate for replacing the lead based ferroelectric materials in for instance non-volatile ferroelectric random access memories (FRAM). This is due to the fact that the bismuth based ferroelectrics consists of pseudo perovskite units sandwiched in between bismuth oxide layers, which gives them a better fatigue nature. In this thesis thin films of Bi4Ti3O12 have been deposited by chemical vapour deposition (CVD) using the metal iodides, BiI3 and TiI4 as precursors. Films grown on MgO(001) substrates were found to grow epitaxially. The electrical properties were determined for films grown on Pt-coated silicon and good properties such as a high dielectric constant (ε) of 200, low tan δ of 0.018, a remnant polarisation (Pr) of 5.3 μC/cm2 and coercive field (Ec) as high as 150 kV/cm were obtained. Thin films in the Bi-Ti-O system were also deposited by atomic layer deposition (ALD) using metalorganic precursors. In addition to the ternary bismuth titanates, films in the binary oxide systems i.e. bismuth oxides and titanium oxides were deposited. Epitaxial TiO2 films were deposited both by CVD and ALD using TiI4 as precursor. The rutile films deposited by ALD were found to grow epitaxially down to a temperature of at least 375 ¢ªC on α-A12O3(0 1 2) substrates. The TiO2 ALD process was also studied in-situ by QCM. Different bismuth oxides were deposited by halide-CVD using BiI3 as precursor on MgO(0 0 1) and SrTiO3(0 0 1) substrates and the results were summarised in an experimental CVD stability diagram. The Bi2O2.33 phase was found to grow epitaxially on both substrates.
|
49 |
Titano okisdų formavimas vandens garų plazmoje / Formation of titanium oxides using water vapour plasmaUrbonavičius, Marius 02 February 2012 (has links)
Šio darbo literatūros apžvalgoje aptariami plazmos tipai, plazmos charakteristikos bei sąveika su medžiaga. Aptariama plazminės implantacijos technologija. Trumpai apibūdinama vandens garų plazma ir jos panaudojimas. Apžvelgiama titano oksido struktūra bei jo panaudojimas katalizatorių gamybai, kurie gali būti skirti skaldyti vandens molekules ir gaminti vandenilį. Darbe paaiškinamas magnetroninis nusodinimas bei jo privalumai. Darbo metu buvo oksiduojamas titanas vandens garų plazmoje. Titano oksidacija priklauso nuo daugybės plazmoje vykstančių procesų (adsorbcija, sulaikymas, vakansijų susidarymas ir pan.). Titano oksido panaudojimas yra labai platus dabartiniu metu. Aptariama šio eksperimento technologija bei atliekama oksiduotų titano dangų analizė. SEM, XRD, AES, GDOES analizės metodais buvo tiriama titano dangos oksidacija ir aiškinamas oksidacijos mechanizmas. / Types of plasma, characteristics and plasma interaction with solids are discussed in the literature review of this paper. Also, the plasma immersion ion implantation are described. Water vapour plasma are briefly discussed. Titanium oxide structure and it‘s usage for catalyst which could split water molecules are reviewed. Magnetron deposition are explained in this paper. The titanium film was oxidized by water vapour plasma on experiment. The oxidation of titanium depends on many processes in plasma (adsorption, trapping, formation of oxygen vacancies and etc.). Appliance of titanium oxide is very large in recent times. Experimental technology are discussed and plasma treated films are analysed. Titanium oxidation was analysed by SEM, XRD, AES, GDOES. Oxidation mechanism was explained in this paper.
|
50 |
Titania Nanoscale Films and Surfaces : Surface Science Investigation of Structure and PropertiesRagazzon, Davide January 2014 (has links)
This thesis presents surface science studies, investigating several aspects of titanium dioxide at the atomic scale. The greater part of this work is devoted to the preparation by chemical vapor deposition (CVD) of titanium(IV) tetraisopropoxide (TTIP) of ultrathin TiO2 or TiOx films on Au(111). Four ordered structures were growth and characterized. It was also demonstrated how the morphology of the film (wetting film vs island) can be tailored. The acquired knowledge about the CVD process was exploited to load nano porous gold with titania, enhancing its catalytic activity. The reactivity towards water adsorption of the titania structures on Au(111) was also investigated. Finally, part of this work concerned the studying of the behavior of water on the stoichiometric rutile TiO2(110) surface, combining the experiments with density-functional theory (DFT) calculations and (kinetic) Monte Carlo simulations. The main experimental techniques used in this work are low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and photoelectron spectroscopy (PES).
|
Page generated in 0.0703 seconds