• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 71
  • 12
  • 9
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 219
  • 219
  • 219
  • 77
  • 62
  • 36
  • 36
  • 31
  • 30
  • 27
  • 23
  • 22
  • 20
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Mycobacterial infection: Immune evasion, host susceptibility and immunological markers of diagnostic importance

Arko-Mensah, John January 2008 (has links)
<p>IIn the first study, we investigated the functional implications of prolonged TLR signalling on IFN-γ mediated killing of mycobacteria by murine macrophages <i>in vitro</i>. TLR2, but not TLR4 ligation interfered with IFN-γ mediated killing of mycobacteria in macrophages. In terms of mechanisms, neither TNF nor nitric oxide (NO) production was significantly affected, and the refractoriness induced could be reversed with increasing amounts of IFN-γ In the second study, we aimed to identify immunological markers of diagnostic importance in both the respiratory tract and serum during pulmonary mycobacterial infection in mice. We found that increased levels of immunological markers in the respiratory tract, but not serum, correlated better with active mycobacterial infection in the lungs, suggesting that the immune response in the respiratory tract is more reflective of the infection status and pathology than the systemic response. Finally, we investigated the level and nature of immune responses to pulmonary mycobacterial infection in BALB/c and C57BL/6 mice, two mouse strains known to exhibit different susceptibilities to infection with several intracellular pathogens, including mycobacteria. We showed that increased susceptibility of BALB/c mice to early mycobacterial infection was associated with reduced Th1 immune responses, and increased sTNFR secretion in the lung. Moreover, BALB/c mice recruited fewer monocytes/macrophages to the lung, and although IFN-γ stimulation of infected bone marrow derived macrophages in both mouse strains resulted in induction of antimycobacterial activity, BALB/c mice had a reduced capacity to kill ingested bacteria. The work presented in this thesis provide further insight into the mechanisms involved in the host-pathogen interaction; from persistence, to the immunological processes induced by the pathogen, to susceptibility of the host to infection.</p>
42

"Study of the modulation of innate immune responses in intestinal epithelial cells by Toxoplasma gondii and its correlation with parasite virulence" / "Etude de la modulation des réponses immunitaires innées dans les cellules épithéliales intestinales par Toxoplasma gondii, et sa corrélation avec la virulence du parasite."

Morampudi, Vijay V 28 October 2010 (has links)
Early innate response of intestinal epithelial cells is the first line defense against enteric pathogens. Toxoplasma gondii infections acquired naturally via the peroral route, encounter intestinal epithelial cells early post-infection. Although the population structure of T. gondii is known to be highly clonal, clinical strains of T. gondii have been classified into three genotypes based on their virulence. In this study we investigated whether human intestinal epithelial cell immune response to T. gondii is virulence dependent. We demonstrated distinct virulence of the three T. gondii genotype strains evaluated in human intestinal epithelial cells by their capacity to replicate and induce host cell cytotoxicity. The early host innate mechanisms such as activation of signaling pathways and induction of innate effectors were likewise differentially elicited by the three T. gondii strains. Low levels of TLR dependent NF-kB activation and a failure to rapidly up-regulate innate cytokine and chemokine genes was observed after virulent Type I strain infection. In contrast, early innate response to the less virulent Type II strain was rapid, efficient and led to high levels of IL-8 and IL-6 secretion, whereas response to Type III parasites was intermediate. Early expression of b-defensin 2 gene was suppressed specifically by virulent Type I strain and its activation prior to infection in intestinal epithelial cells led to decreased parasite viability. These findings provide evidence for T. gondii strain virulence dependent down-modulation of early human intestinal epithelial cell innate responses and highlight the importance of these cells in host defense against this infection.
43

Mycobacterial infection: Immune evasion, host susceptibility and immunological markers of diagnostic importance

Arko-Mensah, John January 2008 (has links)
IIn the first study, we investigated the functional implications of prolonged TLR signalling on IFN-γ mediated killing of mycobacteria by murine macrophages in vitro. TLR2, but not TLR4 ligation interfered with IFN-γ mediated killing of mycobacteria in macrophages. In terms of mechanisms, neither TNF nor nitric oxide (NO) production was significantly affected, and the refractoriness induced could be reversed with increasing amounts of IFN-γ In the second study, we aimed to identify immunological markers of diagnostic importance in both the respiratory tract and serum during pulmonary mycobacterial infection in mice. We found that increased levels of immunological markers in the respiratory tract, but not serum, correlated better with active mycobacterial infection in the lungs, suggesting that the immune response in the respiratory tract is more reflective of the infection status and pathology than the systemic response. Finally, we investigated the level and nature of immune responses to pulmonary mycobacterial infection in BALB/c and C57BL/6 mice, two mouse strains known to exhibit different susceptibilities to infection with several intracellular pathogens, including mycobacteria. We showed that increased susceptibility of BALB/c mice to early mycobacterial infection was associated with reduced Th1 immune responses, and increased sTNFR secretion in the lung. Moreover, BALB/c mice recruited fewer monocytes/macrophages to the lung, and although IFN-γ stimulation of infected bone marrow derived macrophages in both mouse strains resulted in induction of antimycobacterial activity, BALB/c mice had a reduced capacity to kill ingested bacteria. The work presented in this thesis provide further insight into the mechanisms involved in the host-pathogen interaction; from persistence, to the immunological processes induced by the pathogen, to susceptibility of the host to infection.
44

Exploring the Immunogenicity and Therapeutic Applications of Boranophosphate-modified RNA: siRNA and RNA Aptamers

Sharaf, Mariam Lucila January 2011 (has links)
<p>Borane (BH<sub>3<sub>) chemistry offers unique chemical characteristics that enable boranophosphate (BP) oligonucleotides with potential to enhance RNA therapeutic applications such as RNA interference (RNAi) and RNA aptamers. Further, BP nucleotides are substrates for RNA polymerases which allow the enzymatic synthesis of stereoregular boranophosphate (BP)-RNA molecules of different lengths and properties. We expect that these BP-RNAs will interact in a novel way with the desired target molecules because they can coordinate with a diverse array of ligand sites in proteins or other RNA molecules. This is due to the distinct hydrophobicity, sterospecificity, and polarity properties imparted by the phosphorus-boron (P-B) chemical bond compared to the natural phosphorus-oxygen (P-O) bond. </p><p>The object of this dissertation is to explore the therapeutic applications of the BP-RNA such as siRNA, RNA aptamers, and in addition investigate the immunogenicity of this modification. We used mouse cells to determine if BP-RNA would activate toll-like receptor (TLR 7), which is involved in innate immune response to foreign single stranded RNA (ssRNA). This response is undesired when applied to oligonucleotide therapeutics such as siRNA and RNA aptamers. In terms of RNAi, it would be an advantage to have low immunogenicity and high downregulation activity by the siRNA. To determine the innate immune activation of the BP-RNA through the TLR 7 we used a known activator, the human immunodeficiency virus (HIV) derived single-stranded RNA (ssRNA40) and measured the production of cytokines as a function of the number of modified BP-linkages. The production of cytokines IL-6 and TNF&#945; was quantified after the boranophosphate (BP), phosphorothioate (PS) or natural ssRNA40 were transfected into murine macrophage Raw264.7 cells. Natural and phosphorothioate RNA (PS-RNA) have been shown to be activators of TLR 7 receptors. In contrast, we found that fully modified BP- ssRNA40 did not activate TLR 7. This is relevant in oligonucleotide applications such as siRNA and RNA aptamers where off-target effects such as immune activation after administration are not desired. </p><p>Subsequently, the low immune activation would be an advantage when coupled to RNAi activity of the oligonucleotide. Thus, we explored whether BP modified siRNA molecules would modulate gene expression and if there was an effect on downregulation activity when increasing the number of BH3 modifications on the phosphate backbone. Our therapeutic model was the multi-drug resistance 1 (MDR1) gene that expresses P-glycoprotein (P-gp), which has been notoriously difficult to modulate. The aberrant regulation of genes such as MDR1 in cancer cells are a major cause of chemotherapeutic treatment failure against human cancers. Hence, controlling the expression of cancer genes with antisense technology is a possible cancer therapy. Specifically, correcting the overexpression of p-glycoprotein using modified siRNAs that target and degrade the P-glycoprotein mRNA produced by the MDR1 gene. We found that there is a reduction of siRNA activity with an increasing number of BP-modifications. It appears that there is a fine balance between lack of immune response and gene downregulation when applied to BP-siRNA. </p><p>Finally, we compared the enrichment during the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method of two libraries, one BP-RNA (U&#945;B) compared to a doubly-modified RNA (2'FC & U&#945;B), against a human thrombin. Aptamers modulate protein activity and interfere with protein signaling by binding to the desired protein with high affinity and specificity leading to their use in therapeutic applications where protein activity needs to be controlled or it is anomalous. In the case of blood coagulation, thrombin plays a central role in coagulation signaling cascade and it is a good target to use to control blood coagulation in clinical settings. We attempted to optimize the selection of BP- RNA aptamers through 4-8 rounds of SELEX against the protein thrombin. We found that the selection conditions were not optimal for BP-RNA SELEX possibly due to non-specific binding to a bovine serum albumin (BSA) in the selection buffer.</p> / Dissertation
45

IMPACT OF NONSTRUCTURAL HEPATITIS C VIRUS ANTIGENS AND TOLL-LIKE RECEPTOR AGONISTS ON DENDRITIC CELL IMMUNOGENICITY

2013 August 1900 (has links)
Dendritic cells (DCs) function mainly as antigen presenting cells (APCs) and as such they play a significant role in activating the adaptive immune system. Dendritic cells express toll-like receptors (TLR), and when these receptors are engaged by their cognate agonists, they promote DC maturation, which is critical in the induction of potent T helper (Th) cell -1 responses. Due to the multifunctional abilities of DCs, they have been explored as vaccine carriers, largely in cancer immunotherapy and some infectious diseases including hepatitis C. Previous studies showed that DCs loaded with mRNA of hepatitis C virus (HCV) antigen(s) induced strong immune responses but immune protection was not complete. Therefore, I expected that adoptive transfer of DCs transfected with HCV NS3/4A and/or NS5A mRNA and further treated with TLR agonist(s) ex vivo would induce HCV-specific immunity in vivo. Bone marrow-derived DCs generated with Flt3L (FL-DCs) or GM-CSF (GM-DCs), and loaded with HCV NS3/4A and/or NS5A mRNA showed maturation characteristics and produced substantial amounts of IL-12 after ex vivo activation with CpG ODN or CpG ODN plus Poly I:C, when compared to their untreated counterparts. Treatment with a combination of CpG ODN and Poly I:C synergized to augment IL-12 production in comparison with stimulation with CpG ODN alone. IL-12 secretion by DCs is pivotal in directing immune responses towards a Th1-bias response, which is needed to eliminate HCV. However, the ex vivo responses of stimulated DCs bearing HCV antigen(s) were not efficiently translated in mice to potentiate vigorous antigen-specific T cell responses. This resulted in a lack of protection after challenge with recombinant vaccinia virus expressing HCV NS3/NS4/NS5 in immunized mice. In contrast, both antigen-specific humoral and cell-mediated immune responses were induced in mice vaccinated with HCV recombinant NS3 or NS5A protein co-formulated with CpG ODN, host defense peptide and polyphosphazene. These responses, however, did not mediate viral clearance, as vaccinated mice remained unprotected from infection with recombinant vaccinia virus expressing HCV antigens. Taken together, these results suggest HCV recombinant protein co-formulated with triple adjuvant to be a better vaccine candidate than the DC-based vaccine.
46

Major tea catechin inhibits dendritic cell maturation in response to microbial stimulation

Rogers, James L 01 June 2007 (has links)
Dendritic cells (DCs) are a migratory group of bone-marrow-derived leukocytes specialized for uptake, transport, processing and presentation of antigens to T cells. Exposure of DCs to bacterial pathogens can induce DC maturation characterized by cytokine production, up-regulation of co-stimulatory molecules and an increased ability to activate T cells. DCs have the ability to restrict growth of L. pneumophila (Lp), an intracellular Gram-negative bacillus that causes a severe form of pneumonia known as Legionnaires' disease, in murine ER-derived organelles (121) but replicate in human DCs (145). Even in human cells, however, lysis of the DCs does not occur for at least 24 hours which may allow DCs time to participate in the transition from innate to adaptive immunity (145). The primary polyphenol in green tea extract is the catechin (-)-epigallocatechin-3-gallate (EGCG) which accounts for most of the numerous reported biological effects of green tea catechins, including anti-bacterial, anti-tumor, and neuroprotective effects. Primary murine bone marrow derived DCs from BALB/c mice were treated in vitro with Lp, or stimulated for comparison with Escherichia coli lipopolysaccharide (LPS). CD11c, considered an important marker of mouse DCs, and surface expression of co-stimulatory molecules CD40, CD80, CD86, as well as class I/ II MHC molecules was determined by flow cytometry. Treatment of the cells with EGCG inhibited the microbial antigen induced up-regulation of CD11c, CD40, CD80, CD86 and MHC I/ II molecules. EGCG also inhibited, in a dose dependent manner, induced production of the Th1 helper cell activating cytokine, IL-12, and the chemokines RANTES, MIP1a, and MCP-1. However, EGCG upregulated TNFa production. In addition, EGCG inhibited both Lp and LPS induced expression of both TLR2 and TLR4 as well as LPS-induced NF-kB activation; all of which are important mediators of DC maturation. The modulation of phenotype and function of DCs by EGCG has implications for host interaction with microbial pathogens like Lp, which involve TLR interaction.
47

Immunomodulatory role of flagellin in antigen-presenting cells

Vicente-Suarez, Ildefonso 01 June 2007 (has links)
Toll-like receptors (TLRs) expressed by cells of the immune system play a central role in the generation of immune responses against pathogens. Following TLR ligation, both pro-inflammatory and anti-inflammatory mediators are produced in order to elicit an immune response that controls the microbial infection while limiting tissue damage. Among these mediators, the proinflammatory cytokine IL-12 and the anti-inflammatory cytokine IL-10 are known to play major roles. Here, we show that in vitro or in vivo stimulation with flagellin, the TLR5 ligand, does not result in IL-10 production. Furthermore flagellin inhibits IL-10 production by other specific TLR ligands at the protein and mRNA levels while increasing IL-12p70 production. Several studies have linked the activation of extracellular signal regulated kinases (ERKs) with IL-10 induction by TLRs. Our findings that LPS-induced ERK activation is significantly decreased in flagellin-treated macrophages suggest that this pathway might play a role in the inhibition of IL-10 production by flagellin. Flagellin-mediated IL-10 inhibition was not observed in cells that do not express TLR5 supporting that this effect is TLR5-dependent.Flagellin used as an adjuvant is capable of priming antigen specific T cell responses in an in vivo model of tolerance using high dose peptide. Furthermore, DCs differentiated in tolerogenic conditions (tolerogenic-DCs) express higher levels of TLR5 mRNA than standard BM-DCs and respond more vigorously to flagellin stimulation. Antigen presentation by LPS-matured tolerogenic-DCs results in the differentiation of IL-10 producing T cells with a Tr1-like phenotype. On the contrary, antigen presentation by tolerogenic-DCs that have been stimulated with flagellin results in the differentiation of a typical Th1 responseThis study provides a new insight of the role of flagellin recognition by TLR5 in shaping the immune response elicited by flagellated microorganisms.
48

Systems-Level Analysis of the Toll-like Receptor Network of Dendritic Cells

Chevrier, Nicolas 21 June 2013 (has links)
Cells detect and respond to environmental changes using intracellular networks, and defects in the wiring of these networks contribute to diseases. For example, Toll-like receptors (TLRs) sense microbial molecules and trigger pathways critical for host defense. Genetic defects in components of the TLR and other pathogen-sensing pathways have been linked to human diseases. Hence, rational targeting of these pathways should help to manipulate immune responses associated with infections, autoimmunity, or vaccines. A fundamental challenge is to dissect the intracellular networks mobilized by pathogen-sensing pathways. Here we present approaches to dissect the TLR network of innate immune dendritic cells (DCs), focusing on two regulatory layers: signaling and transcription. First, we present a strategy to systematically perturb candidate regulators and monitor cellular transcriptional responses. We apply this approach to derive regulatory networks that control the transcriptional response to TLR engagement by microbial molecules. Our approach revealed the regulatory functions of 125 transcription factors (TFs), chromatin modifiers, and RNA binding proteins, which enabled the construction of a network model consisting of 24 core regulators and 76 “fine-tuners” that help explain how TLR pathways achieve specificity. Second, we report the systematic discovery of signaling components in TLR responses. By combining transcriptional profiling, genetic and small molecule perturbations, and phosphoproteomics, we uncover 35 signaling regulators, including 16 known members of the TLR signaling pathways. In particular, we find that Polo-like kinases (Plk) 2 and 4 are essential components of antiviral pathways in vitro and in vivo and activate a signaling branch involving a dozen proteins, among which is Tnfaip2, a gene associated with autoimmune diseases but whose role was unknown. Lastly, we expand these approaches to integrate functional and physical interactions linking the ‘signaling-to-transcription’ TLR network. By combining our perturbation-based approach with measurements of physical interactions, including phosphorylation, protein complexes, and TF binding to DNA, we uncover 30 signaling regulators mechanistically linked to 19 downstream TFs. The integration of these datasets into a model reveals the organization of the TLR response. Overall, these studies illustrate the power of combining systematic measurements and perturbations to elucidate complex intracellular circuits and discover potential therapeutic targets.
49

Μελέτη του ρόλου των υποδοχέων φυσικής ανοσίας (mannose receptors, toll-like receptors) στην αλληλεπίδραση της P. aeruginosa με ανθρώπινα μονοκύτταρα

Ξαπλαντέρη, Παναγιώτα 16 January 2009 (has links)
Σκοπός της μελέτης ήταν η αποσαφήνιση των μηχανισμών με τους οποίους η P.aeruginosa διαντιδρά με τους PRRs των μακροφάγων. Από τα δεδομένα μας οι υποδοχείς TLR2 και Mannose receptor συνεργάζονται προς μέγιστη ενεργοποίηση των μακροφάγων σε απάντηση στη λοίμωξη από P.aeruginosa / The aim of the study was to delineate the mechanisms of P.aeruginosa interaction with specific PRRs on macrophages. Our data suggest that TLR2 and Mannose receptor synergize for maximum activation of human macrophages during Pseudomonas infection.
50

THE MOLECULAR EVOLUTION OF INNATE IMMUNITY GENES

Wlasiuk Battagliotti, Gabriela January 2009 (has links)
It is not clear whether genes of the innate immune system of vertebrates are subject to the same selective pressures as genes of the adaptive immune system, despite the fact that innate immunity genes lie directly at the interface between host and pathogens. The lack of consensus about the incidence, type, and strength of selection acting on vertebrate innate immunity genes motivated this study. The goal of this work was to elucidate the general principles of innate immune receptor evolution within and between species. A phylogenetic analysis of the Toll-like receptor 5 (TLR5) in primates showed an excess of nonsynonymous substitutions at certain codons, a pattern that is consistent with recurrent positive selection. The putative sites under selection often displayed radical substitutions, independent parallel changes, and were located in functionally important regions of the protein. In contrast with this interspecific pattern, population genetic analysis of this gene in humans and chimpanzees did not provide conclusive evidence of recent selection. The frequency and distribution of a TLR5 null mutation in human populations further suggested that TLR5 function might be partially redundant in the human immune system (Appendix A). Comparable analyses of the remaining nine human TLRs produced similar results and further pointed to a biologically meaningful difference in the pattern of molecular evolution between TLRs specialized in the recognition of viral nucleic acids and the other TLRs (Appendix B). The general picture that emerges from these studies challenges the conventional idea that pattern recognition receptors are subject to an extreme degree of functional constraint dictated by the recognition of molecules that are essential for microbial fitness. Instead, TLRs display patterns of substitution between species that reflect an old history of positive selection in primates. A common theme, however, is that only a restricted proportion of sites is under positive selection, indicating an equally important role for purifying selection as a conservative force in the evolution of this gene family. A comparative analysis of evolutionary rates at fifteen loci involved in innate, intrinsic and adaptive immunity, and mating systems revealed that more promiscuous species are on average under stronger selection at defense genes (Appendix C). Although the effect is weak, this suggests that sexual promiscuity plays some role in the evolution of immune loci by affecting the risk of contracting infectious diseases.

Page generated in 0.094 seconds