Spelling suggestions: "subject:"nodlikereceptor"" "subject:"likereceptor""
21 |
The role(s) of JLP scaffolding protein in regulating LPS- vs. poly(I:C)-activated mature dendritic cell functionsZhao, Chongbo 20 December 2012 (has links)
TLR3- and TLR4-mediated DC activation lead to distinct function of mature DC, in which MAPKs pathway is involved. JNK-associated leucine zipper protein (JLP) associates with JNK/p38 phosphorylation, however the role of JLP in DC is not well understood. We previously found either LPS or poly(I:C) up-regulated JLP expression in BMDC. Therefore we hypothesized JLP plays a differential role in TLR3- and TLR4-mediated BMDC maturation and functions. We demonstrated JLP facilitated LPS- and poly(I:C)-induced CD86 and CD40 up-regulation, LPS-induced CD80 up-regulation and poly(I:C)-induced MHC-II up-regulation. We found JLP down-regulated IL-12 production in LPS-stimulated BMDC, and up-regulated IL-6 production in poly(I:C)-stimulated BMDC. Our data also showed JLP negatively regulated MHC-II antigen presentation in LPS- and poly(I:C)-stimulated BMDC and JLP was involved in promoting LPS-activated BMDC survival, but not in poly(I:C)-activated BMDCs. Therefore our current data suggested a multi-functional role of JLP in the regulation of TLR3- and TLR4-mediated DC maturation.
|
22 |
The role(s) of JLP scaffolding protein in regulating LPS- vs. poly(I:C)-activated mature dendritic cell functionsZhao, Chongbo 20 December 2012 (has links)
TLR3- and TLR4-mediated DC activation lead to distinct function of mature DC, in which MAPKs pathway is involved. JNK-associated leucine zipper protein (JLP) associates with JNK/p38 phosphorylation, however the role of JLP in DC is not well understood. We previously found either LPS or poly(I:C) up-regulated JLP expression in BMDC. Therefore we hypothesized JLP plays a differential role in TLR3- and TLR4-mediated BMDC maturation and functions. We demonstrated JLP facilitated LPS- and poly(I:C)-induced CD86 and CD40 up-regulation, LPS-induced CD80 up-regulation and poly(I:C)-induced MHC-II up-regulation. We found JLP down-regulated IL-12 production in LPS-stimulated BMDC, and up-regulated IL-6 production in poly(I:C)-stimulated BMDC. Our data also showed JLP negatively regulated MHC-II antigen presentation in LPS- and poly(I:C)-stimulated BMDC and JLP was involved in promoting LPS-activated BMDC survival, but not in poly(I:C)-activated BMDCs. Therefore our current data suggested a multi-functional role of JLP in the regulation of TLR3- and TLR4-mediated DC maturation.
|
23 |
Toll-Like Receptors: Target of Hepatitis C Virus: A DissertationChang, Serena Soyoung Yunmee 08 August 2008 (has links)
Hepatitis C Virus (HCV) is the primary cause of liver transplantation due to its chronic nature in up to eighty percent of infected cases. Around 3 percent of the world’s population is infected with HCV. Treatment for HCV is a combined Ribavirin and interferon-α (IFN-α) therapy effective in only fifty to eighty percent of patients depending on HCV genotype. The growing health concern with this disease is the lack of a cure despite liver transplantation. HCV targets hepatocytes, liver cells, but is not cytolytic. HCV has been shown to induce end stage liver disease through sustained inflammation from the host’s immune system in the liver. One of the key dilemmas in HCV research and the search for fully effective treatments or vaccines is the lack of animal models. HCV infectivity and disease is limited to primates, most specifically to humans, which cannot be fully replicated in any other living being. The mechanisms for HCV evasion or activation of the immune system are complex, many and discoveries within this field are crucial to overcoming this destructive hepatic infection.
Toll-like receptors (TLR) are cellular activators of the innate immune system that have been a target of HCV. Activated TLRs trigger both the inflammatory and anti-viral pathways to produce inflammatory cytokines and interferons. HCV proteins have been reported to activate a number of TLRs in a variety of cell types. In order to identify possible targets of HCV within the TLR family, we first characterized TLR presence and function in both human hepatic carcinoma cell lines and purified primary human hepatocytes. RNA from TLRs 1-10 was observed to varying degrees in both the hepatoma cell lines and the primary hepatocytes. We show the extracellular and/or intracellular presence of TLR2, TLR1, TLR3 and TLR7 proteins in hepatoma cell lines. TLR3 and TLR7 are located within the endosome and recognize viral RNA products. We recently reported that TLR2-mediated innate immune signaling pathways are activated by HCV core and NS3 proteins. TLR2 activation requires homo- or heterodimerization with either TLR1 or TLR6. We show NF-κB activation in hepatoma cells by TLR2/1, TLR2/6 ligand and HCV protein stimulation. In primary hepatocytes, HCV proteins induced both IL-8 and IL-6 production. We also show that primary hepatocytes initiate a Type 1 IFN response in addition to IL-8 and IL-6 production upon stimulation with a TLR7/8 ligand. Human hepatoma and primary hepatocytes are responsive to TLR2, TLR1, TLR6, TLR7/8 ligands and HCV proteins. Activation of these TLRs may contribute to the inflammatory mediated destruction caused by HCV or could be targets of HCV contributing to its immune evasion.
We found previously that hepatoma cells and primary hepatocytes are responsive to TLR2 ligands and HCV proteins. We also reported that TLR2 is activated by HCV proteins. Here we aimed to determine whether TLR2 coreceptors participated in cellular activation by HCV core or NS3 proteins. By designing siRNAs targeted to TLR2, TLR1 and TLR6, we showed that knockdown of each of these receptors impairs pro- and anti-inflammatory cytokine activation by TLR-specific ligands as well as by HCV core and NS3 proteins in Human Embryonic Kidney cells (HEK/TLR2) and in primary human macrophages. We found that HCV core and NS3 proteins induced TNF-α and IL-10 production in human monocyte-derived macrophages, which was impaired by TLR2, TLR1 and TLR6 knockdown. Contrary to human data, results from TLR2, TLR1 or TLR6 knockout mice indicated that the absence of TLR2 and its coreceptor TLR6, but not TLR1, prevented the HCV core and NS3 protein-induced peritoneal macrophage activation. TLR2 may utilize both TLR1 and TLR6 coreceptors for HCV core- and NS3-mediated activation of macrophages and innate immunity in humans. These results imply that multiple pattern recognition receptors could participate in cellular activation by HCV proteins contributing to inflammatory disease.
Two critical factors in chronic HCV infection are inflammatory disease and immune evasion. We have demonstrated that TLR2 and its co-receptors play a role in inflammatory-mediated induction via HCV NS3 and core administration. It has recently been shown that HCV targets the TLR3 pathway to aid in immune evasion. TLR3 is only one of four viral recognition receptors located within the endosome and it is plausible that HCV may target others. We hypothesized that HCV infection may interfere with the expression and function of TLR7, a sensor of single stranded RNA. Investigating any effect on TLR7 by HCV may reveal a new mechanism for HCV immune evasion. Low levels of both TLR7 mRNA and protein were measured in HCV replicating cells compared to control cells while reducing HCV infection with either IFNα or restrictive culture conditions restored the decreased TLR7 expression. Downstream of the TLR7 pathway, an increased baseline IRF7 nuclear translocation was observed in HCV replicating cells compared to controls. Stimulation with a TLR7 ligand, R837, resulted in significant IRF7 nuclear translocation in control cells. In contrast, HCV replicating cells showed impaired IRF7 activation. Use of RNA polymerase inhibitors on hepatoma cells, control and HCV replicating, revealed a shorter TLR7 half life in HCV replicating cells compared to control cells which was not seen in TLR5 mRNA. These data suggest that reduced TLR7 expression, due to RNA instability, directly correlates with HCV replication and results in impaired TLR7-induced IRF7-mediated cell activation.
In conclusion, Hepatitis C Virus manipulates specific Toll-like receptors’ expression and their signaling pathways to induce cytokine production. HCV utilizes surface receptors TLR2 and its co-receptors which once activated could contribute to inflammatory disease by production of inflammatory cytokines and possibly immune evasion. HCV down-regulates TLR7, a viral recognition receptor, by decreasing mRNA stability which could facilitate evasion of host immune surveillance.
|
24 |
Modulation of Tissue Toll-Like Receptor 2 and 4 During the Early Phases of Polymicrobial Sepsis Correlates With MortalityWilliams, David L., Ha, Tuanzhu, Li, Chuanfu, Kalbfleisch, John H., Schweitzer, John, Vogt, William, Browder, I. William 01 June 2003 (has links)
Objective: To determine whether there was a correlation between induction of polymicrobial sepsis, modulation of tissue Toll-like receptor (TLR) gene, and protein expression and survival outcome. Design: Prospective, randomized animal study. Setting: University medical school research laboratory. Subjects: Age- and weight-matched ICR/HSD mice. Interventions: Sepsis was induced by cecal ligation and puncture (CLP). No-surgery and sham (laparotomy)-operated mice were controls. We also examined tissue TLR2 and TLR4 messenger RNA and TLR4 protein levels in mice treated with an immunomodulator that increases survival in polymicrobial sepsis. In the immunomodulator study, mice were treated with glucan phosphate (50 mg/kg, intraperitoneally) 1 hr before CLP. No-surgery, sham surgery, glucan + no-surgery, sham surgery + glucan, and CLP groups were employed as controls. Measurements and Main Results: Total RNA was isolated from liver, lung, and spleen at 0, 1, 3, 6, 8, and 24 hrs after CLP. TLR gene expression was assessed by reverse transcription-polymerase chain reaction. Tissue TLR4 protein levels were evaluated at 24 hrs by Western blot and immunohistochemistry. CLP sepsis increased (p < .05) liver and lung TLR2 and TLR4 gene expression compared with controls. TLR4 protein concentrations also were increased. Increased TLR2/4 gene and TLR4 protein expression correlated with mortality. Immunoprophylaxis with glucan phosphate increased (p < .001) long-term survival (20% vs. 70%) but inhibited (p < .05) CLP-induced increases in tissue TLR2 and TLR4 messenger RNA expression as well as TLR4 protein expression. Conclusions: Early increases in TLR2/4 gene and TLR4 protein expression correlated with mortality, whereas blunting TLR gene and protein expression correlated with improved long-term survival. This suggests that early up-regulation of tissue TLR2/4 may play a role in the proinflammatory response and pathophysiology of polymicrobial sepsis.
|
25 |
Valsartan Blocked Alcohol-Induced, Toll-Like Receptor 2 Signaling-Mediated Inflammation in Human Vascular Endothelial CellsWang, Yushu, Li, Yi, Shen, Qingyu, Li, Xiangpen, Lu, Juan, Li, Xiangping, Yin, Deling, Peng, Ying 01 January 2014 (has links)
Background: Alcohol consumption induces inflammatory damage in vessels, and the underlying mechanism is unclear. Valsartan, as one of the angiotensin receptor blockers (ARBs), plays a role in the inhibition of inflammatory reactions in vascular dysfunction. This study is to investigate the role of Toll-like receptor 2 (TLR2) in alcohol-induced inflammatory damage in vascular endothelial cells in vitro and to explore the protective effect of valsartan on alcohol-induced and TLR2-mediated inflammatory damage. Methods: The human umbilical vein cell line (EA.hy926) were exposed to alcohol at 0 to 80 mM for 0 to 48 hours with or without valsartan pretreatment. The expression of TLR2 signaling, including TLR2, tumor necrosis factor receptor associated factor 6 (TRAF-6) and nuclear factor kappa B (NF-κB) p65 were detected by Western blot. The levels of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were determined by ELISA. To confirm the role of TLR2, we functionally up-regulated or down-regulated TLR2 by using TLR2 agonist or TLR2 small interfering RNA (siRNA), respectively. To further investigate the mechanism of alcohol on renin-angiotensin system, we detected the expression of angiotensin II receptor type 1 (AGTR1) in protein levels. Results: The expression of TLR2, TRAF-6, NF-κB p65, and the proinflammatory cytokines, TNF-α and IL-6, were significantly increased after alcohol exposure in EA.hy926 endothelial cells. This was enhanced by TLR2 agonist, and was inhibited by TLR2 siRNA transfection. The pretreatment of valsartan resulted in an inhibition of TLR2 signaling and proinflammatory cytokines. The expression of AGTR1 was up-regulated after alcohol exposure, and was blocked by valsartan pretreatment. Conclusions: TLR2 signaling-mediated alcohol induced inflammatory response in human vascular epithelial cells in vitro, which was inhibited by valsartan.
|
26 |
Transcriptional Suppression of miR-29b-1/miR-29a Promoter by c-Myc, Hedgehog, and NF-kappaBMott, Justin L., Kurita, Satoshi, Cazanave, Sophie C., Bronk, Steven F., Werneburg, Nathan W., Fernandez-Zapico, Martin E. 01 August 2010 (has links)
MicroRNAs regulate pathways contributing to oncogenesis, and thus the mechanisms causing dysregulation of microRNA expression in cancer are of significant interest. Mature mir-29b levels are decreased in malignant cells, and this alteration promotes the malignant phenotype, including apoptosis resistance. However, the mechanism responsible for mir-29b suppression is unknown. Here, we examined mir-29 expression from chromosome 7q32 using cholangiocarcinoma cells as a model for mir-29b downregulation. Using 5′ rapid amplification of cDNA ends, the transcriptional start site was identified for this microRNA locus. Computational analysis revealed the presence of two putative E-box (Myc-binding) sites, a Gli-binding site, and four NF-κB-binding sites in the region flanking the transcriptional start site. Promoter activity in cholangiocarcinoma cells was repressed by transfection with c-Myc, consistent with reports in other cell types. Treatment with the hedgehog inhibitor cyclopamine, which blocks smoothened signaling, increased the activity of the promoter and expression of mature mir-29b. Mutagenesis analysis and gel shift data are consistent with a direct binding of Gli to the mir-29 promoter. Finally, activation of NF-κB signaling, via ligation of Toll-like receptors, also repressed mir-29b expression and promoter function. Of note, activation of hedgehog, Toll-like receptor, and c-Myc signaling protected cholangiocytes from TRAIL-induced apoptosis. Thus, in addition to c-Myc, mir-29 expression can be suppressed by hedgehog signaling and inflammatory pathways, both commonly activated in the genesis of human malignancies.
|
27 |
The role of microglia and Toll-like Receptor-4 in neuronal apoptosis in a subarachnoid hemorrhage modelLeBlanc III, Robert H. 12 March 2016 (has links)
BACKGROUND
A subarachnoid hemorrhage (SAH) is a bleed into the subarachnoid space surrounding the brain. This disease affects roughly 30,000 Americans each year and approximately one in six affected individuals die at the time of the ictal event. Individuals that do survive suffer from many complications including delayed cerebral vasospasm (DCV), cerebral edema, fever, and increased intracranial pressure (ICP) amongst others. These patients often suffer from brain damage due to neuronal apoptosis as a consequence of excess neuroinflammation. Microglia, the resident macrophage of the central nervous system, and Toll-like Receptor-4 (TLR4), a pro-inflammatory transmembrane receptor, have both been shown to play a role in the neuroinflammation seen in SAH. RBC components have been shown to activate microglial TLR4, and this event is suggested to trigger downstream mechanisms leading to neuronal apoptosis. The presented research takes a closer look at the role of microglial TLR4 in early neuronal apoptosis seen in an SAH model.
METHODS
All mice used were 10- to 12-week-old males on a C57BL/6 background: TLR4−/−, MyD88−/−, TRIF−/− and wild type (WT). To induce an SAH, a total of 60 ul of arterial blood from a donor WT mouse was injected for over 30 seconds into another mouse. For in vitro experiments, either primary microglia (PMG) or murine microglial BV2 cells were used. Microglia were separated from murine neuronal HT22 cells by 3um cell culture inserts or transwells, before being stimulated with lipopolysaccharide (LPS), red blood cells (RBCs), or RBC components including hemin (structurally similar to heme) and hemoglobin. In vivo samples were studied using either immunohistochemistry (IHC) or Fluorescence Activated Cell Sorting (FACS), and in vitro cells were studied using IHC and Light Microscopy. Neuronal cell death was measured using TUNEL and/or FloroJade C (FJC) assays. Cognitive function after SAH was measured using the Barnes Maze protocol.
RESULTS
In a 24-hour time course, more death occurred in the HT22 cells associated with BV2s treated with RBCs for 12-hour and 24-hour incubation time points as compared to 1-hour and 3-hour time points. Similar results were seen in the WT PMGs, as HT22 apoptosis increased in the RBC treated WT groups as the incubation time points increased. The WT PMG and MyD88−/− RBC treated PMGs showed significant death as compared to a WT untreated control (p<0.05) using a FJC assay, and both showed more death in a TUNEL assay as compared to an untreated control. WT mice treated with whole blood and hemoglobin had significantly more apoptosis as compared with a normal saline (NS)-treated control mouse (p<0.05). WT PMGs treated with whole blood and hemoglobin had more apoptosis as compared with an untreated control. MyD88-/- treated with RBC, hemoglobin, and hemin had more HT22 cell death compared with other genotypes treated with the same component. For the Barnes Maze, TLR4−/− mice performed significantly less total errors than WT mice on POD5 and 6 (p<0.01), and took significantly less time to reach the goal chamber on POD4, POD5 (p<0.05), and POD6 (p<0.01).
CONCLUSION
Our experimental results suggest that a microglial TLR4-dependent, MyD88-independent pathway is involved in neuronal apoptosis very early in an SAH model via RBC and hemoglobin activation, and that neuronal cell apoptosis due to TLR4 expression may be related to SAH-related cognitive and behavioral deficits. Our results suggest that TRIF may be the intracellular adaptor that is involved in this mechanism, but further experiments are needed to confirm this.
|
28 |
MYD88: A CENTRAL MEDIATOR OF CORNEAL EPITHELIAL INNATE IMMUNE RESPONSESJohnson, Angela Christine January 2008 (has links)
No description available.
|
29 |
The Role of Bacterial Amyloids In Regulating Gastrointestinal HomeostasisOppong, Gertrude Odamea January 2015 (has links)
Many bacterial species exist in nature as part of highly structured multicellular communities known as biofilms. Amyloids, proteins with a conserved β-sheet quarternary structure, show high resistance to many chemical and enzymatic processes including proteinase K and SDS treatments and are produced as essential adhesins during biofilm formation. Curli fibers expressed by Enterobacteriaceae family members including E. coli and S. Typhimurium are the most studied amyloids to date. Curli-like fibers are also produced by members of the predominant phyla found in the host gastrointestinal microbiota in environmental biofilms. Curli fibers are the predominant microbial-associated molecular pattern (MAMP) on enteric bacteria recognized by the Toll-like receptor (TLR) 2/1-heterodimer complex. Interestingly, the TLR2/1 complex has been implicated as a key player in modulating gastrointestinal homeostasis. The focus of the current studies centered on the innate immune recognition of curli fibers by cells of the gastrointestinal tract and how that contributes to gastrointestinal homeostasis. In the first phase of our studies, utilizing intestinal epithelial cells polarized on semi-permeable tissue culture inserts (Transwells®), we observed that the recognition of curli fibers on Salmonella enterica serovar Typhimurium by intestinal epithelial cells led to the augmentation of the intestinal epithelial barrier in a PI3K-dependent manner. We also observed that bacterial translocation of S. Typhimurium from the apical side to the basolateral side of the Transwell system was limited when curli fibers were present. Furthermore, infection of mice with S. Typhimurium showed that translocation of bacteria from the intestinal lumen into the cecal tissue and mesenteric lymph nodes was limited in C57BL/6 mice as compared to TLR2 knockout mice. In the second phase of our studies, we sought to further investigate the effect that curli fibers exert on gastrointestinal homeostasis through the induction of immunomodulatory cytokines such as Interleukin 10 (IL10) from subepithelial lamina propria cells. IL10 has been shown to contribute to the maintenance of the intestinal epithelial barrier and IL10-deficient mice develop lethal colitis within the first 2-3 months of life. 6-8 week-old female C57BL/6 and TLR2-/- mice were given 5mg/kg of curli fibers via intraperitoneal injection. Subsequent RT-PCR analysis of the small intestine showed a significant expression of Il10 in C57BL/6 that was absent in TLR2-/- mice. Interestingly, no changes in Ifnγ or Tgfβ mRNA were observed in these mice. This response was gut-specific, as Il10 was not detected at all in the spleen. Furthermore, in a chemically-induced colitis model, we observed that the administration of curli fibers to 8-week old Balb/c mice ameliorated disease severity as compared to colitic mice that received mock treatments. Interestingly, Il10 was also induced in the colons of colitic mice that received curli and which were euthanized 6 days after colitis was induced. Our results suggest that curli fibers induce IL10 production via a TLR2-dependent manner to dampen inflammation in the gastrointestinal tract. Overall, our results partially describe a novel role for curli amyloid fibers produced by commensal bacteria in modulating gastrointestinal health and homeostasis. We propose that the induction of immunomodulatory cytokine such as IL10 by amyloid fibers is an important mechanism utilized by commensal bacterial to confer beneficial effects that benefit both the host and microbe. We also propose curli fibers as a potential alternative in the treatment of inflammatory bowel disease. / Microbiology and Immunology
|
30 |
The Role of Toll-Like Receptor Agonist Treatment on Salmonella Infection in MacrophagesWong, Christine Elizabeth 09 1900 (has links)
Salmonella is a Gram-negative intracellular pathogen that causes gastroenteritis and
typhoid fever in humans. Salmonella can survive and replicate within host cells and has adapted several mechanisms to evade host immune defenses. The innate immune system plays an important role as a first-line of defense against pathogens such as Salmonella,
and is mediated in part by toll-like receptors (TLRs). TLRs recognize fundamental components of pathogenic microorganisms and activation of TLRs leads to downstream signaling cascades eventually resulting in the expression of pro-inflammatory cytokines (4) and also has a role in activating adaptive immunity through presentation of antigens to lymphocytes (86). There are several lines of evidence that suggest that TLR activation may have therapeutic potential in therapies against infectious disease and several TLR agonists have been shown to protect against both bacterial and viral infection in mice (7; 8; 38; 66; 75; 84; 89; 121). To understand how TLR-agonist treatment of host cells affects Salmonella pathogenesis, RAW 264.7 murine macrophages were treated with the TLR agonists liposaccharide (LPS), poly(I:C), peptidoglycan, and CpG-ODN. Treatment of macrophages with all TLR-agonists results in increased phagocytosis of Salmonella compared to control-treated macrophages. These increases in phagocytic activity, however, do not enhance macrophage anti-microbial activity, since Salmonella infection of TLR-treated macrophages results in increased intracellular replication compared to control-treated cells. Infection with Salmonella mutants indicates that increased intracellular replication of Salmonella in TLR-treated macrophages is dependent on a functional SPI-2 type III secretion system. This also indicates that there
was not a generalized defect in macrophage anti-bacterial function. These data exemplify
how interactions between macrophage defense mechanisms and bacterial virulence factors can result in evasion of the innate immune response. Studying how TLR-agonist treatment affects Salmonella pathogenesis will give us a better understanding of the host-pathogen relationship and may provide insight into novel strategies to fight intracellular microorganisms. / Thesis / Master of Science (MSc)
|
Page generated in 0.0378 seconds