Spelling suggestions: "subject:"detopologie géométriques"" "subject:"topopologie géométriques""
1 |
New combinatorial features of knots and virtual knotsMortier, Arnaud 12 July 2013 (has links) (PDF)
Un nœud est un plongement du cercle dans une variété de dimension 3. Dans la sphère S3 , les nœuds peuvent être codés combinatoirement par des diagrammes de Gauss. Ceux-ci peuvent être étudiés indépendamment, en oubliant les véritables nœuds: c'est ce qu'on appelle la théorie des nœuds virtuels. En première partie nous définissons une version générale de nœuds virtuels, dépendant d'un groupe G muni d'un morphisme à valeurs dans Z/2. Lorsque ces paramètres sont bien choisis, la théorie obtenue généralise les nœuds dans une surface épaissie quelconque (c'est-à-dire un fibré en droites réelles sur une surface). Outre l'encodage des nœuds, les diagrammes de Gauss sont aussi un outil puissant pour décrire les invariants de type fini de Vassiliev. En seconde partie, nous donnons un ensemble complet de critères pour détecter ces invariants. Notamment, le critère d'invariance sous Reidemeister III est une réponse positive à une conjecture de M.Polyak. Parmi les exemples donnés figure une nouvelle preuve et une généralisation du théorème de Grishanov-Vassiliev sur les invariants par chaînes planaires. La troisième partie est une ébauche de plan visant à trouver un algorithme pour décider si un diagramme donné dans l'anneau R × S1 représente une tresse fermée dans le tore solide, à isotopie près. La première étape est franchie, consistant à trouver un critère reconnaissant les diagrammes de Gauss des tresses fermées. Nous conjecturons que ce critère suffit pour les diagrammes à nombre minimal de croisements, et proposons des pistes dans cet objectif. La dernière partie est un travail commun avec T.Fiedler, explorant les propriétés d'objets non génériques liés à l'espace de toutes les immersions du cercle dans R3 . Cet espace est de dimension infinie, stratifié par le degré de non généricité des immersions. Alors que la théorie de Vassiliev se cantonne à l'étude des strates contenant uniquement des points doubles ordinaires, ici nous interdisons ces points doubles et autorisons uniquement un certain type de points triples. Nous montrons que l'espace qui en résulte n'est pas simplement connexe en exhibant un 1-cocycle non trivial. Une pondération de ce 1-cocycle fournit une nouvelle formule pour l'invariant de Casson des nœuds.
|
2 |
Enrichissements de siegelBachy, Ismael 10 October 2011 (has links)
On s'intéresse dans ce travail à la description des enrichissements des disques de Siegel d'une fraction rationnelle f. Dans un premier temps nous étudions les enrichissements qui sont définis sur un ouvert de la grande orbite d'un disque de Siegel donné. Ce sont nécessairement des applications qui commutent à f là où les compositions ont un sens. Ce sont donc des applications linéaires en coordonnées linéarisantes. Le résultat principal de ce travail est que l'on peut obtenir toutes les applications linéaires en coordonnées linéarisantes définies sur un sous-disque du disque de Siegel de f. Pour démontrer ce résultat nous utilisons la compacité des applications linéarisantes normalisées, le théorème des fonctions implicites dans l'espace des fractions rationnelles de degré fixé et une étude du comportement du rayon d'univalence des applications linéarisantes. Nous identifions également les approches donnant lieu à des enrichissements définis ou à valeurs dans le disque de Siegel tout entier (enrichissements maximaux). Au passage nous généralisons aux limites avec ordre de contact fini par rapport au cercle unité un théorème de JC.Yoccoz sur le comportement du rayon d'univalence pour la famille quadratique lorsque le paramètre converge vers un nombre complexe de module un et d'argument un nombre de Brjuno.Ensuite, nous nous intéressons au cas où f a plusieurs cycles de disques de Siegel. Nous utilisons le théorème de transversalité d'A.Epstein pour décrire les enrichissements de f dans ce cas là. La linéarisabilité de f et la convergence des applications linéarisantes permet de transférer le problème de la description des enrichissements de Siegel de f à un problème de limite géométrique de sous-semigroupes de l'ensemble des nombres complexes non-nuls engendrés par un élément. Nous donnons dans ce travail un modèle topologique de l'adhérence de cet ensemble de sous-semigroupes. Nous déduisons de ces résultats une interprétation en terme de convergence géométrique de dynamiques de polynômes quadratiques et une description des points d'accumulation, pour la topologie de Hausdorff sur les compacts non-vides, des ensembles de Julia lorsque le paramètre tend vers un paramètre de Siegel. / In this work we are interested in giving the description of Siegel discs enrichments of a rational map f. We first study the case of enrichments that are defined on an open subset of the grand orbit of a given Siegel disc. These maps commute with f where it makes sense. Thus they are linear in linearizing coordinates. The main result of this work is that we can obtain all linear maps in linearizing coordinates that are defined in a subdisc of the Siegel disc. For this we use the compactness of the set of normalized linearizing maps, the implicit functions theorem in the space of rational maps with fixed degree and a study on the behaviour on the univalent radius of the linearizing maps. We identify approaches giving enrichments that are defined or take values on the whole Siegel disc (maximal enrichments). We generalize to finite order of contact approaches with respect to the unit circle a theorem of JC.Yoccoz on the behaviour of the univalent radius for the quadratic family when the parameter converges to a complex number of modulus one with argument a Brjuno number.We then focus on the case where f has more than one Siegel disc. We make use of A.Epstein's transversality theorem to describe Siegel enrichments of f in this case. The linearisability of f and the convergence of the linearizing maps reduces the problem of Siegel enrichments description to a geometric limit problem on one generated closed sub-semigroups ofthe set of non zero complex numbers. We give in this work a topological model fot the closure of this set of sub-semigroups.We deduce from these results an interpretation in terms of geometric convergence of quadratic polynomial dynamics and we describe the accumulation points (for the Hausdorff topology on non empty compact subsets) of Julia sets when the parameter converges to a Siegel parameter.
|
3 |
Invariants topologiques quantiques non semi-simples.Patureau-Mirand, Bertrand 07 December 2012 (has links) (PDF)
Invariants topologiques quantiques non semi-simples. La théorie des nœuds (courbes simples plongées dans R³, à déformation continue près) se développe au début du XXième siècle avec notamment les travaux d'Alexander et de Reidemeister. Elle a connu un tournant avec la topologie quantique née en 1984 par la découverte par Vaughan Jones d'une manière d'associer à chaque nœuds un polynôme. Vladimir Turaev et Nicolai Reshetikhin interprètent et généralisent ce procédé en terme de représentations des groupes quantiques. Aujourd'hui encore, la compréhension géométrique de ces invariants est ténue. Toujours dans les années 80, Edward Witten donne une interprètation physique du polynôme de Jones et suggère une généralisation aux variétés de dimension trois. Vladimir Turaev avec Nicolai Reshetikhin puis avec Oleg Viro réalise rigoureusement ces invariants nouveaux pour les variétés de dimension trois. Dans de nombreux cas, ces constructions s'avèrent triviales. Ceci est lié à la présence de représentations des groupes quantiques qui ne sont pas semi-simples. Mes travaux, en collaboration avec Nathan Geer, Vladimir Turaev, Francesco Costantino et Alexis Virelizier ont consisté, pour une grande part, à modifier les constructions précédentes pour définir des invariants non triviaux dans ce cadre non semi-simple. Ces travaux m'ont amené a développer, avec Nathan Geer et Jonathan Kujawa, des techniques algébriques qui présentent un intérêt propre en théorie des représentations. Relier les constructions de la topologie quantique et les invariants d'origine plus géométriques constitue un vrai challenge des mathématiques modernes pour lequel les invariants non semi-simples que j'ai définis offrent un point de vue prometteur.
|
4 |
Equivariance et invariants de type fini en dimension troisMoussard, Delphine 30 November 2012 (has links) (PDF)
Cette thèse a pour objet l'étude des invariants de type fini des sphères d'homologie rationnelle de dimension 3, et des nœuds homologiquement triviaux dans ces sphères. Les principaux résultats sont présentés dans le chapitre 2. Ils sont démontrés dans les chapitres 3 à 6. Le chapitre 3 est un article intitulé ''Finite type invariants of rational homology 3-spheres'', à paraître dans Algebraic & Geometric Topology. Il décrit le gradué associé à la filtration de l'espace vectoriel rationnel engendré par les sphères d'homologie rationnelle, définie par les chirurgies rationnelles préservant le lagrangien. Le chapitre 4 est un article intitulé ''On Alexander modules and Blanchfield forms of null-homologous knots in rational homology spheres'', publié dans Journal of Knot Theory and its Ramifications. Il contient la classification des modules d'Alexander des nœuds homologiquement triviaux dans les sphères d'homologie rationnelle, et une étude des formes de Blanchfield définies sur ces modules. Dans la suite, on considère les paires (M,K) formées d'une sphère d'homologie rationnelle M et d'un nœud K homologiquement trivial dans M. Dans le chapitre 5, on montre que deux telles paires ont des modules d'Alexander rationnels munis de leurs formes de Blanchfield isomorphes si et seulement si elles s'obtiennent l'une de l'autre par une suite finie de chirurgies rationnelles nulles préservant le lagrangien, c'est-à-dire effectuées sur des corps en anses d'homologie rationnelle homologiquement triviaux dans le complémentaire du nœud. Dans le chapitre 6, on étudie le gradué associé à la filtration de l'espace vectoriel rationnel engendré par les paires (M,K) définie par les chirurgies rationnelles nulles préservant le lagrangien. Ces deux derniers chapitres comportent des travaux en progrès.
|
Page generated in 0.0469 seconds