• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 54
  • 7
  • 1
  • Tagged with
  • 120
  • 58
  • 30
  • 27
  • 22
  • 21
  • 19
  • 16
  • 16
  • 15
  • 15
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles topologiques pour la multirésolution

Kraemer, Pierre Bechmann, Dominique. January 2008 (has links) (PDF)
Thèse de doctorat : Informatique : Strasbourg 1 : 2008. / Titre provenant de l'écran-titre. Bibliogr. 9 p.
2

Phénomènes de rigidité pour un réseau dans un produit de groupes /

Louvet, Nicolas Bekka, M. Bachir. January 1998 (has links) (PDF)
Thèse de doctorat : Sciences et techniques communes : Metz : 1998. / 1998METZ040S. 54 REF.
3

Structure électronique et propriétés de réseaux cohérents de nanocristaux semi-conducteurs / Electronic structure and properties of coherent superlattices of semiconductor nanocrystals

Tadjine, Athmane 27 September 2018 (has links)
La nanostructuration de matériaux semi-conducteurs permet de modifier le comportement des porteurs de charge. Ces modifications sont causées par les effets de confinement quantique. Dans cette thèse, nous étudions par des approches théoriques (numériques et analytiques) les propriétés de réseaux cohérents de nanocristaux semi-conducteurs. Ces réseaux sont expérimentalement obtenus par des méthodes ascendantes (bottom-up) d’auto-assemblage orienté. Nous montrons que leurs structures de bandes électroniques peuvent être modélisées par un simple Hamiltonien effectif dont les énergies propres sont analytiques. En outre, nous proposons une méthode descendante (top-down) de nano-fabrication consistant en la gravure de puits quantiques semi-conducteurs par des méthodes de lithographie. Cette approche permet de reproduire artificiellement des réseaux bidimensionnels à fort intérêt et comportant des fermions de Dirac tels que le nid d’abeilles, le kagome et le Lieb. Nous étudions ensuite l’effet d’un champ magnétique statique sur un nanocristal isolé, puis sur un réseau de nanocristaux en nid d’abeilles dans lequel nous prédisons l’apparition de grands moments magnétiques. Enfin, nous montrons que dans les réseaux carrés PbSe, un désordre original portant sur les signes des termes de couplage entre nanocristaux apparaît. Nous montrons que ce désordre est réductible par des transformations de jauge, et nous quantifions le désordre réel (résiduel) ressenti par les électrons. / Semiconductor nanostructuration methods are a new route leading to the tuning of charge carriers behavior. This tuning is a direct consequence of the quantum confinement effect. In this thesis, we study using numerical and analytical approaches the properties of coherent superlattices of semiconductor nanocrystals. These superlattices are synthesized by bottom-up methods of oriented self-assembly. We show that their electronic band structures can be modeled by a simple effective Hamiltonian with analytical eigenvalues. In addition, we propose a top-down method where a periodic arrangement of holes is etched in semiconductor quantum wells using lithography. We show that it is possible to artificially reproduce two-dimensional lattices of high interest such as the honeycomb, the kagome and the Lieb lattices. Most of these lattices host Dirac fermions that we also recover in the superlattices. In another chapter, we study the effect of a static magnetic field on isolated nanocrystals and on honeycomb superlattices. We predict the presence of large magnetic moments in those systems. Finally, we show that, in PbSe square superlattices, a bond-sign disorder should arise. We find that this disorder is reducible by gauge transformations and we quantify the true (residual) disorder felt by electrons.
4

Uniform domains of higher order /

Alestalo, Pekka. January 1994 (has links)
Thesis--University of Helsinki, 1994. / N° de "Annales Academiae scientiarum Fennicae. Series A1, Mathematica. Dissertationes", ISSN 0355-0087, (1994)94. Bibliogr. p. 46-48.
5

Sur les actions localement libres du groupe affine.

Ghys, Etienne, January 1900 (has links)
Th. 3e cycle--Math. pures--Lille 1, 1979. N°: 775.
6

Étude de solutions solitoniques nommées Q-balls dans le contexte de théories lagrangiennes jaugées

Deshaies-Jacques, Martin January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
7

Aspects topologiques et chaotiques en mécanique quantique

Faure, Frédéric 17 October 2006 (has links) (PDF)
Beaucoup de phénomènes physiques sont décrits ou modélisés par des ondes (ondes acoustiques, électromagnétiques, sismiques, ou quantiques,...). C'est donc un problème général que de pouvoir décrire l'évolution d'une onde dans un environnement donné. Une question très reliée est de décrire les ondes stationnaires et leurs niveaux d'énergie. Dans ce travail l'expérimentation numérique joue un rôle important.<br /><br />Chaos quantique: <br /><br />Lorsque l'onde est piégée dans une cavité (ex: onde quantique d'un atome dans une molécule) son comportement peut être très complexe à cause de phénomènes de dispersion et d'interférences. En particulier dans une cavité chaotique (où les trajectoires sont toutes instables) l'onde va se disperser très vite et de nombreux phénomènes d'interférences, parfois surprenant, vont survenir. Par exemple dans certains modèles très particuliers (“ l'application du Chat d'Arnold ”), on a observé qu'un paquet d'onde se reforme parfaitement après un temps très court, alors qu'un nuage de particules se distribuerait de façon uniforme. Ces phénomènes d'interférences sont mal compris en général. Un des projets de recherche est de montrer que ce phénomène surprenant, et potentiellement riche en applications, pourrait être présent dans beaucoup de modèles de “ chaos quantique ”. Comme conséquence, nous avons démontré l'existence surprenante d'ondes stationnaires localisées sur des orbites périodiques instables (“ scars ”), dans le “ modèle du chat d'Arnold ” quantique. Un des résultat principaux est la construction du seul contre-exemple connu à la conjecture d'unique ergodicité quantique (de Rudnik-Sarnak 1994) qui affirme que pour les dynamiques uniformément hyperboliques toutes les ondes stationnaires deviennent équi-distribuées dans la limite des petites longueurs d'ondes. Une telle propriété a des répercussions en physique mésoscopique pour la conductivité des ondes électroniques, mais aussi en théorie des nombres en mathématiques.<br /><br />Phénomènes topologiques en physique moléculaire:<br /><br />Dans une autre série de travaux, nous avons mis en évidence un phénomène topologique assez surprenant que l'on observe très bien dans le spectre d'énergie des petites molécules. Malgré leur petitesse, ces molécules forment des systèmes très complexes car composées d'électrons et de noyaux en interactions, décrits par la mécanique quantique. Nous avons montré qu'une compréhension qualitative des propriétés de la molécule (c.a.d. donnant les grandes structures du spectre) peut être obtenue grâce à une description topologique des interactions entre les constituants. Autrement dit, en interagissant, les différents constituants de la molécule sont comme noués, et forment un objet géométrique (“ un espace fibré ”) dont la forme se manifeste directement dans le spectre d'énergie. En termes techniques, nous utilisons une théorie mathématique élaborée (le théorème de l'indice d'Atiyah-Singer qui jette un pont entre la topologie et l'analyse), et il est remarquable que cette théorie ait une application directe et non évidente en physique moléculaire. Sans elle, il n'est pas possible d'aborder les spectres complexes de ces molécules. Un projet est d'explorer plus avant les applications de cette approche dans d'autre domaines de la physique quantique des particules en interactions, comme la théorie quantique des champs en régime “ non perturbatif ”.<br /><br />Systèmes dynamiques hors équilibre. Étude du chaos classique et des résonances de Ruelle.<br /><br />Dans les lois d'évolution déterministes, le chaos provient de la “ sensibilité aux conditions initiales ”: si les trajectoires issues de deux conditions initiales très voisines divergent l'une de l'autre dans le futur ou le passé (on parle de système hyperbolique), cela implique un comportement compliqué et imprévisible. Un nuage de point va se répandre et s'équidistribuer selon une mesure invariante appelée “ mesure d'équilibre ”. Avec cette idée, dans les années 70', D. Ruelle a montré que l'étude de l'évolution des densités de probabilité est régit par un opérateur, appelé “ opérateur de transfert ”, qui possède un spectre discret, appelé “ résonances de Ruelle ”. Ce spectre décrit le régime transitoire (irréversible) de transition vers l'équilibre ainsi que la mesure d'équilibre finale. Dans des travaux récents nous avons montré que ce spectre peut se comprendre et s'étudier comme un spectre de “ résonances quantiques ”: Une résonance quantique en physique atomique est un état méta-stable qui peut fuir vers l'infini, hors de l'atome après un certain temps. Par analogie, pour les systèmes chaotiques, une résonance de Ruelle est une distribution qui fuit vers l'infiniment petit (ou grands modes de Fourier). Cette nouvelle approche nous permet d'obtenir des résultats nouveaux sur la description du spectre, comme l'existence de gaps ou sur la densité de résonances.
8

Terahertz Spectroscopy of Topological Phase Transitions in HgCdTe-based systems / Spectroscopie Térahertz de Transitions de Phase Topologique dans des hétérostructures à base de CdHgTe

Marcinkiewicz, Michal 10 July 2017 (has links)
Cette thèse porte sur l'exploration de différentes phases topologiques présentes dans des hétérostructures à base de mercure, cadmium et tellure (HgCdTe). Ces systèmes sont de parfaits cas d'études des états topologiques dans la matière condensée. En effet, leur structure de bande peut aisément être modifiée d'inversée à non-inversée par le biais de paramètres internes ou externes.Lorsqu'un système présente une structure de bande inversée, il a une topologie non triviale. Il est impossible de modifier cet ordre topologique sans fermer son gap, ce qui inévitablement entraîne l'apparition de particules sans masse dans son volume. Un système présentant une structure de bande inversée et un gap d'énergie finie dans lequel se trouve le niveau de Fermi, est appelé isolant topologique. Ce nouveau type de matériau est isolant dans son volume, mais abrite des états métalliques sans gap sur ses bords. Ces derniers ont une relation de dispersion linéaire et sont protégés des effets liés au désordre et de la rétrodiffusion par des impuretés non magnétiques. Ces états particuliers apparaissent à l'interface de matériaux présentant des ordres topologiques différents. Ainsi, un isolant topologique 2D se caractérise par des canaux 1D de conductance polarisés en spin à ses bords, alors qu'un isolant topologique 3D accueille des fermions de Dirac 2D, polarisés en spin, aux surfaces.L'existence de fermions sans masse 2D et 3D a déjà été démontrée expérimentalement. Cependant, la transition de phase topologique durant laquelle apparaissent les particules sans masse n'a que très peu été explorée. Il est possible de modifier la structure de bande de HgCdTe d'inversée à non inversée par le biais de la composition chimique, la pression, la température ou le confinement quantique. Ces paramètres permettent ainsi de sonder le système au voisinage de différentes transitions de phase topologiques. Dans ce travail, l'utilisation de la température comme paramètre d'ajustement continu du gap permet d'étudier au point de transition de phase l'apparition de fermions semi-relativistes de Dirac (2D) et de Kane (3D) ainsi que leurs propriétés.Les systèmes étudiés au cours de ces travaux de recherche sont des cristaux massifs de Hg1-xCdxTe et des puits quantiques HgTe/CdTe présentant des structures de bandes inversées et non inversées, ainsi que des couches minces de HgTe contraintes pouvant être considérées comme des isolants topologiques 3D ayant un confinement quantique résiduel. Tous ces systèmes possèdent des propriétés topologiques. L'interprétation des résultats s'appuie sur les prédictions théoriques basées sur le modèle de Kane. En annexe, une vue d'ensemble des puits quantiques composites InAs/GaSb, structures également identifiées comme isolants topologiques, est présentée, comportant les résultats préliminaires obtenus sur ces dernières.Toutes les structures ont été étudiées par magnétospectroscopie en transmission dans les domaines de fréquence terahertz et infra-rouge moyen à l'aide d'un dispositif expérimental spécifiquement conçu pour permettre des mesures sur une large plage de températures. / This thesis presents an investigation of different topological phases in mercury-cadmium-telluride (HgCdTe or MCT) based heterostructures. These solid state systems are indeed a perfect playground to study topological states, as their band structure can be easily varied from inverted to non-inverted, by changing internal or external parameters.If a system has an inverted band ordering, its electronic structure has a non-trivial topology. One cannot change its topological order without closing the band gap, which is inevitably accompanied with the appearance of massless particles in the bulk. A system, that has an inverted band structure and a finite gap in which the Fermi level is positioned, is called a topological insulator. These novel materials are insulators in the bulk, but host gapless metallic states with linear dispersion relation at boundaries, protected against disorder and backscattering on non-magnetic impurities. These states arise at the interfaces between materials characterized by a different topological order. A 2D topological insulator is thus characterized by a set of 1D spin-polarized channels of conductance at the edges, while a 3D topological insulator supports spin-polarized 2D Dirac fermions on its surfaces.The 2D and 3D massless fermions have already been demonstrated experimentally in HgCdTe-based heterostructures. However, the topological phase transitions during which the massless particles appear remain barely explored. The HgCdTe band structure can be tuned from inverted to non-inverted using chemical composition, pressure, temperature, or quantum confinement. These parameters therefore allow to probe the system in the vicinity of different topological phase transitions. In this thesis, the use of temperature as continuous band gap tuning parameter allows to study the appearance and the parameters of semi-relativistic 2D Dirac and 3D Kane fermions emerging at the points of phase transitions.The systems investigated were Hg$_{1-x}$Cd$_x$Te bulk systems and HgTe/CdTe quantum wells characterized by an inverted and regular band order, and strained HgTe films which can be considered as 3D topological insulators with a residual quantum confinement. All these systems exhibit topological properties, and the experimental results are interpreted according to theoretical predictions based on the Kane model. This thesis is complemented by an overview and the preliminary results obtained on a different compound -- a InAs/GaSb broken-gap quantum well, which was also identified as a topological insulator. The structures were studied by means of terahertz and mid-infrared magneto-transmission spectroscopy in a specifically designed experimental system, in which temperature could be tuned in a broad range.
9

Chaos en dynamique topologique, en particulier sur l'intervalle, mesures d'entropie maximale

Ruette, Sylvie 26 November 2001 (has links) (PDF)
Dans cette thèse on s'intéresse aux propriétés liées au chaos et aux mesures d'entropie maximale (ou mesures maximales) pour certains systèmes, en particulier ceux sur l'intervalle. Pour un système dynamique $(X,T)$, une entropie non nulle est considérée comme une propriété chaotique. On montre qu'une entropie non nulle implique la présence de couples asymptotiques propres, c'est-à-dire des couples de points distincts $(x,y)$ tels que la distance entre $T^n x$ et $T^n y$ tend vers zéro quand $n$ tend vers l'infini. Si $T$ est de plus inversible, de nombreux couples asymptotiques pour $T$ sont des couples de Li-Yorke pour l'inverse de $T$. Les preuves de ces résultats sont ergodiques. Une chaîne de Markov topologique est l'ensemble des chemins sur un graphe orienté ; c'est un outil pour l'étude des mesures maximales. Un graphe connexe est transient, récurrent nul ou récurrent positif. On rappelle les liens entre ces classes et la possibilité d'étendre ou de restreindre le graphe sans changer l'entropie, et on montre qu'un graphe transient admet un surgraphe récurrent de même entropie. On sait qu'une chaîne de Markov transitive a une mesure maximale si et seulement si le graphe est récurrent positif. On donne un nouveau critère impliquant la récurrence positive et on montre l'existence de mesures presque maximales fuyant vers l'infini pour un graphe non récurrent positif. Quand on se restreint aux systèmes sur l'intervalle, les diverses notions de chaos coïncident largement. On présente une synthèse des liens existant entre les différentes propriétés chaotiques. Pour un système sur l'intervalle, la question d'existence d'une mesure maximale se ramène dans certains cas à l'étude d'une chaîne de Markov. Cela permet de donner une condition assurant l'existence d'une mesure maximale pour les transformations $C^1$. Pour tout entier $n$, on construit des exemples de transformations de l'intervalle $C^n$ et mélangeantes mais n'admettant aucune mesure maximale.
10

Quasi-ordre à longue distance et défauts topologiques dans le graphène sur rhénium étudié par microscopie à effet tunnel / Quasi-long-range order and topological defects in graphene on rhenium studied by scanning tunneling microscopy

Artaud, Alexandre 28 February 2017 (has links)
La découverte du graphène en 2004 constitue une double avancée en physique de la matière condensée. D'une part, ses propriétés électroniques sont celles d’un gaz de fermions de Dirac sans masse. D'autre part, sa structure fournit le tout premier exemple d’un matériau ordonné à deux dimensions.Cette seconde caractéristique est étudiée dans cette thèse par microscopie à effet tunnel (STM), dans le cas du graphène synthétisé en ultra-haut vide sur la face (0001) du rhénium. A deux dimensions, l’ordre cristallin est en effet impossible, et il est prédit qu’un quasi-ordre à longue distance s’y substitue, où la phase du paramètre d’ordre fluctue. Le substrat de rhénium intervient alors comme une influence extérieure qui peut restaurer l’ordre cristallin, en forçant la structure du graphène à épouser une relation d’épitaxie avec le rhénium.L’étude proposée de la structure du graphène démontre qu’elle est en fait tributaire de contraintes cinétiques héritées de sa croissance. Plusieurs nanostructures caractéristiques ont ainsi été identifiées à l’échelle atomique, permettant de remonter au mécanisme de croissance. Deux chemins réactionnels y entrent ainsi en compétition. Le premier aboutit à une famille d’agrégats de carbone métastables, de structures bien définies, en épitaxie sur le rhénium. Le second mène à la croissance d’îlots de graphène qui s’étendent sur quelques nanomètres. La coalescence de ces îlots et l’incorporation des agrégats en leur sein conduit à des défauts structurels dont la structure atomique est détaillée pour la première fois. Cette étude exhaustive révèle la diversité des chemins réactionnels lors de la croissance de graphène sur rhénium, qui sont autant de compromis entre cinétique et thermodynamique.Au terme de cette croissance, le graphène obtenu n’est pas uniforme, mais constitué de domaines s'étendant sur des distances de l'ordre de 10 nm. Chaque domaine présente une relation d'épitaxie entre le graphène et le rhénium qui lui est propre, où le graphène s'avère à la fois tourné et cisaillé par rapport à son substrat, comme le montre une méthode d’analyse d’images STM développée à cet effet. L’élaboration d’une classification universelle de ces relations d'épitaxie montre leur grande diversité. Deux interprétations se confrontent alors. Les parois entre domaines de graphène peuvent en effet être interprétées comme des défauts topologiques dans l’ordre cristallin imposé au graphène par le substrat de rhénium. Alternativement, ce sont des modes de fluctuations dont la dynamique est gelée par l’interaction avec le substrat. Ces résultats remettent donc en question la notion d’ordre cristallin imposé par son substrat à un matériau bidimensionnel. Ils montrent qu’au lieu de forcer une relation d'épitaxie particulière, l’interaction du graphène avec son substrat donne lieu à une phase dite chaotique. / The discovery of graphene in 2004 is a two-fold breakthrough in condensed matter physics. On the one hand, its electronic properties are that of a massless Dirac fermion gas. On the other hand, its structure is the very first example of an ordered material in two dimensions.This second characteristics is studied in this thesis by scanning tunneling microscopy (STM), in the case of graphene grown in ultra-high vacuum on the (0001) surface of rhenium. In two dimensions, crystalline order is indeed impossible, and it is predicted to be replaced by a quasi-long-range order, for which the phase of the order parameter fluctuates. The rhenium substrate then acts as an outside influence that can restore crystalline order, as it forces graphene's structure to adopt an epitaxial relation with rhenium.The study of graphene's structure proposed here proves it actually originates from kinetic constraints inherited from its growth. Many typical nanostructures have indeed been identified at the atomic scale, giving access to the growth mechanism. Two reaction pathways compete. The first one gives rise to a family of metastable carbon clusters with well-defined structures in epitaxy on rhenium. The second one leads to growing graphene islands of a few nanometers in size. The coalescence of these islands and the incorporation of the carbon clusters ends up forming structural defects whose atomic structure is detailed for the first time. This exhaustive study reveals reaction pathways in the growth of graphene on rhenium are diverse, and constitute compromises between kinetics and thermodynamics.At the end of that growth, the obtained graphene is not uniform, but made of roughly 10 nm-large domains. Each domain displays a specific epitaxial relation with rhenium, in which graphene is both twisted and sheared with respect to rhenium, as revealed a STM image analysis method developed for this purpose. Elaborating a universal classification of such epitaxial relations shows they are very diverse. Two interpretations of this morphology are possible. The graphene domain walls can indeed be interpreted as topological defects in the crystalline order set in graphene by the rhenium substrate. Otherwise, they are fluctuation modes whose dynamics is frozen by the interaction with the substrate. These results put into question the notion of crystalline order set by a substrate to a two-dimensional material. They show that instead of forcing a specific epitaxial relationship, the graphene-substrate interaction gives rise to a so-called chaotic phase.

Page generated in 0.0565 seconds