• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 7
  • 1
  • Tagged with
  • 50
  • 50
  • 49
  • 32
  • 14
  • 10
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Molecular Beam Epitaxy and Characterization of Bi-Based V\(_2\)VI\(_3\) Topological Insulators / Molekularstrahlepitaxie und Charakterisierung von Bi-basierten V\(_2\)VI\(_3\) topologischen Isolatoren

Schreyeck, Steffen January 2016 (has links) (PDF)
The present thesis is addressed to the growth and characterization of Bi-based V2VI3 topological insulators (TIs). The TIs were grown by molecular beam epitaxy (MBE) on differently passivated Si(111) substrates, as well as InP(111) substrates. This allows the study of the influence of the substrate on the structural and electrical properties of the TIs. The Bi2Se3 layers show a change of mosaicity-tilt and -twist for growth on the differently prepared Si(111) substrates, as well as a significant increase of crystalline quality for growth on the lateral nearly lattice matched InP(111). The rocking curve FWHMs observed for thick layers grown on InP are comparable to these of common zincblende layers, which are close to the resolution limit of standard high resolution X-ray diffraction (HRXRD) setups. The unexpected high structural crystalline quality achieved in this material system is remarkable due to the presence of weak van der Waals bonds between every block of five atomic layers, i.e. a quintuple layer (QL), in growth direction. In addition to the mosaicity also twin domains, present in films of the V2VI3 material system, are studied. The twin defects are observed in Bi2Se3 layers grown on Si(111) and lattice matched InP(111) suggesting that the two dimensional surface lattice of the substrates can not determine the stacking order ABCABC... or ACBACB... in locally separated growth seeds. Therefore the growth on misoriented and rough InP(111) is analyzed. The rough InP(111) with its facets within a hollow exceeding the height of a QL is able to provide its stacking information to the five atomic layers within a QL. By varying the roughness of the InP substrate surface, due to thermal annealing, the influence on the twinning within the layer is confirmed resulting in a complete suppression of twin domains on rough InP(111). Focusing on the electrical properties of the Bi2Se3 films, the increased structural quality for films grown on lattice matched flat InP(111)B results in a marginal reduction of carrier density by about 10% compared to the layers grown on H-passivated Si(111), whereas the suppression of twin domains for growth on rough InP(111)B resulted in a reduction of carrier density by an order of magnitude. This implies, that the twin domains are a main crystal defect responsible for the high carrier density in the presented Bi2Se3 thin films. Besides the binary Bi2Se3 also alloys with Sb and Te are fabricated to examine the influence of the compound specific point defects on the carrier density. Therefore growth series of the ternary materials Bi2Te(3-y)Se(y), Bi(2-x)Sb(x)Se3, and Bi(2-x)Sb(x)Te3, as well as the quaternary Bi(2-x)Sb(x)Te(3-y)Se(y) are studied. To further reduce the carrier density of twin free Bi2Se3 layers grown on InP(111)B:Fe a series of Bi(2-x)Sb(x)Se3 alloys were grown under comparable growth conditions. This results in a reduction of the carrier density with a minimum in the composition range of about x=0.9-1.0. The Bi(2-x)Sb(x)Te3 alloys exhibit a pn-transition, due to the dominating n-type and p-type point defects in its binary compounds, which is determined to reduce the bulk carrier density enabling the study the TI surface states. This pn-transition plays a significant role in realizing predicted applications and exotic effects, such as the quantum anomalous Hall effect. The magnetic doping of topological insulators with transition metals is studied by incorporating Cr and V in the alloy Bi(2-x)Sb(x)Te3 by codeposition. The preferential incorporation of Cr on group-V sites is confirmed by EDX and XRD, whereas the incorporation of Cr reduces the crystalline quality of the layer. Magnetotransport measurements of the Cr-doped TIs display an anomalous Hall effect confirming the realization of a magnetic TI thin film. The quantum anomalous Hall effect is observed in V-doped Bi(2-x)Sb(x)Te3, where the V-doping results in higher Curie temperatures, as well as higher coercive fields compared to the Cr-doping of the TIs. Moreover the present thesis contributes to the understanding of the role of the substrate concerning the crystalline quality of van der Waals bonded layers, such as the V2VI3 TIs, MoS2 and WoTe2. Furthermore, the fabrication of the thin film TIs Bi(2-x)Sb(x)Te(3-y)Se(y) in high crystalline quality serves as basis to explore the physics of topological insulators. / In der hier vorliegenden Arbeit wurden die auf Bi-Verbindungen basierenden topologischen Isolatoren (TI) des V2VI3-Materialsystems hergestellt und sowohl deren strukturelle als auch elektrische Eigenschaften untersucht. Die Herstellung der TIs mittels Molekularstrahlepitaxie (MBE) erfolgte auf verschieden präparierten Si(111)-Oberflächen und auf InP(111) Substraten. Dadurch konnte der Einfluss der Substrate auf die strukturelle Qualität der Bi2Se3 Schichten, die lateral nahezu perfekt gitterangepasst zu InP(111) sind, analysiert werden. Während bereits die verschieden präparierten Si(111) Oberflächen einen Einfluss auf die Mosaizität aufweisen, erreichen die auf InP(111) gewachsenen Schichten die strukturelle Qualität gängiger Zinkblende Halbleiterschichten die mittels MBE hergestellt werden und damit auch die Auflösungsgrenze eines hoch auflösenden Röntgendiffraktometers (HRXRD). Dies ist besonders bemerkenswert, da diese TIs aus Blöcken von fünf kovalent gebundenen atomaren Schichten (QL) bestehen, die untereinander durch vergleichbar schwache Van-der-Waals Bindungen verbunden sind. Neben der Mosaizität wurden auch Zwillingsdefekte untersucht, die für Schichten des V2VI3 Materialsystems typisch sind. Hier konnte festgestellt werden, dass eine glatte zweidimensionale (2D) Substratoberfläche nicht einheitlich vorgeben kann, ob die Stapelfolge in räumlich getrennten Kristallisationszentren ABCABC... oder ACBACB... ist. Um die Zwillingsdefekte zu unterdrücken wurde das Wachstum auf rauen InP(111) Substraten untersucht. Die raue Oberfläche ermöglicht es an Facetten der Substratoberfläche neben der lateralen Orientierung der Schicht auch die Stapelfolge der Schicht zu definieren. Der Einfluss der Beschaffenheit der Substratoberfläche konnte durch Variation der Rauigkeit, mittels thermischen Ausheizens, belegt werden. Das Wachstum auf rauen InP Substraten führt zu einer kompletten Unterdrückung der Zwillingsdefekte. Betrachtet man nun den Einfluss der Steigerung der Kristallqualität auf die elektrischen Eigenschaften, so stellt man fest, dass die Unterdrückung der Zwillingsdefekte die Ladungsträgerdichte im Vergleich zu dem auf Si gewachsenem Bi2Se3 um eine Größenordnung reduziert, während die Verwendung von gitterangepassten Substraten mit glatter Oberfläche sie lediglich um 10% reduziert. Dies belegt, dass in den hier vorgestellten Schichten die Zwillingsdomänengrenzen die Hauptursache der unerwünscht hohen Ladungsträgerdichten sind. Zusätzlich zu der Verbesserung der kristallinen Qualität von Bi2Se3 wurden Legierungen mit Sb und Te hergestellt, um die Ladungsträgerdichte durch Reduzieren von Punktdefektdichten zu senken. Hierfür wurden sowohl die ternären Bi2Te(3-y)Se(y), Bi(2-x)Sb(x)Se3 und Bi(2-x)Sb(x)Te3, als auch die quaternären Bi(2-x)Sb(x)Te(3-y)Se(y) Legierungen in Wachstumsserien hergestellt und untersucht. Die Legierung Bi(2-x)Sb(x)Se3 wurde wie Bi2Se3 auf rauem InP(111) gewachsen, um die Zwillingsdefekte zu unterdrücken. Durch das Legieren mit Sb konnte eine weitere Reduktion der Elektronen Ladungsträgerdichte, die ihr Minimum im Bereich von x=0.9-1.0 erreicht, realisiert werden. Die Ladungsträgerdichte steigt bei größerem Sb-Gehalt wieder an, bevor ein kompletter Wechsel zur Löcherleitung beobachtet werden konnte. Die Bi(2-x)Sb(x)Te3 Legierungen sind durch den beobachteten pn-Übergang, der durch die in den binären TIs jeweils dominierenden Donator und Akzeptor Punktdefekte erzeugt wird, von großem Interesse, da sich diese Schichten dazu eignen die Volumenleitfähigkeit im Magnetotransport zu unterdrücken. Dies ist von besonderer Bedeutung für die Realisierung der vorhergesagten Anwendungen und exotischen Effekte in TIs. Weiterhin wurde die magnetische Dotierung von Bi(2-x)Sb(x)Te3-Schichten mit den Übergangsmetallen Chrom und Vanadium im Hinblick auf die Realisierung des Quanten anormalen Hall-Effekts (QAHE) untersucht. Der überwiegende Einbau der Cr-Atome auf Gruppe-V-Plätzen konnte mittels EDX und XRD Messungen bestätigt werden. Die TI-Schichten zeigen im Magnetrotransport einen anormalen Hall-Effekt, welcher die Magnetisierung der Schicht durch die Cr-Dotierung bestätigt. Die Realisierung des QAHE konnte in V-dotierten Bi(2-x)Sb(x)Te3 Schichten erzielt werden, welche als weitere Vorteile die höheren Curie-Temperaturen und größere Koerzitivfeldstärken im Vergleich zu Cr-dotierten Schichten mit sich bringen. Die in dieser Arbeit untersuchte Herstellung von den Bi-basierten TI-Schichten des V2VI3-Materialsystems mittels MBE schafft neue Erkenntnisse in Hinblick auf den Einfluss von Substraten auf Van-der-Waals gebundene Schichten, wie zum Beispiel BSTS als auch MoS2 und WoTe2. Die Herstellung von Bi(2-x)Sb(x)Te(3-y)Se(y) TI Schichten in verschiedenen Zusammensetzungen x und y mit hoher struktureller Qualität dient zudem als Grundlage für die weitere Erforschung der TI-basierten Effekte und Anwendungen.
12

Molecular Beam Epitaxy of 2D and 3D HgTe, a Topological Insulator / Molekularstrahlepitaxie von 2D und 3D HgTe, ein topologischer Isolator

Ames, Christopher January 2015 (has links) (PDF)
In the present thesis the MBE growth and sample characterization of HgTe structures is investigated and discussed. Due to the first experimental discovery of the quantum Spin Hall effect (QSHE) in HgTe quantum wells, this material system attains a huge interest in the spintronics society. Because of the long history of growing Hg-based heterostructures here at the Experimentelle Physik III in Würzburg, there are very good requirements to analyze this material system more precisely and in new directions. Since in former days only doped HgTe quantum wells were grown, this thesis deals with the MBE growth in the (001) direction of undoped HgTe quantum wells, surface located quantum wells and three dimensional bulk layers. All Hg-based layers were grown on CdTe substrates which generate strain in the layer stack and provide therefore new physical effects. In the same time, the (001) CdTe growth was investigated on n-doped (001) GaAs:Si because the Japanese supplier of CdTe substrates had a supply bottleneck due to the Tohoku earthquake and its aftermath in 2011. After a short introduction of the material system, the experimental techniques were demonstrated and explained explicitly. After that, the experimental part of this thesis is displayed. So, the investigation of the (001) CdTe growth on (001) GaAs:Si is discussed in chapter 4. Firstly, the surface preparation of GaAs:Si by oxide desorption is explored and analyzed. Here, rapid thermal desorption of the GaAs oxide with following cool down in Zn atmosphere provides the best results for the CdTe due to small holes at the surface, while e.g. an atomic flat GaAs buffer deteriorates the CdTe growth quality. The following ZnTe layer supplies the (001) growth direction of the CdTe and exhibits best end results of the CdTe for 30 seconds growth time at a flux ratio of Zn/Te ~ 1/1.2. Without this ZnTe layer, CdTe will grow in the (111) direction. However, the main investigation is here the optimization of the MBE growth of CdTe. The substrate temperature, Cd/Te flux ratio and the growth time has to be adjusted systematically. Therefore, a complex growth process is developed and established. This optimized CdTe growth process results in a RMS roughness of around 2.5 nm and a FWHM value of the HRXRD w-scan of 150 arcsec. Compared to the literature, there is no lower FWHM value traceable for this growth direction. Furthermore, etch pit density measurements show that the surface crystallinity is matchable with the commercial CdTe substrates (around 1x10^4 cm^(-2)). However, this whole process is not completely perfect and offers still room for improvements. The growth of undoped HgTe quantum wells was also a new direction in research in contrast to the previous n-doped grown HgTe quantum wells. Here in chapter 5, the goal of very low carrier densities was achieved and therefore it is now possible to do transport experiments in the n - and p - region by tuning the gate voltage. To achieve this high sample quality, very precise growth of symmetric HgTe QWs and their HRXRD characterization is examined. Here, the quantum well thickness can now determined accurate to under 0.3 nm. Furthermore, the transport analysis of different quantum well thicknesses shows that the carrier density and mobility increase with rising HgTe layer thickness. However, it is found out that the band gap of the HgTe QW closes indirectly at a thickness of 11.6 nm. This is caused by the tensile strained growth on CdTe substrates. Moreover, surface quantum wells are studied. These quantum wells exhibit no or a very thin HgCdTe cap. Though, oxidization and contamination of the surface reduces here the carrier mobility immensely and a HgCdTe layer of around 5 nm provides the pleasing results for transport experiments with superconductors connected to the topological insulator [119]. A completely new achievement is the realization of MBE growth of HgTe quantum wells on CdTe/GaAs:Si substrates. This is attended by the optimization of the CdTe growth on GaAs:Si. It exposes that HgTe quantum wells grown in-situ on optimized CdTe/GaAs:Si show very nice transport data with clear Hall plateaus, SdH oscillations, low carrier densities and carrier mobilities up to 500 000 cm^2/Vs. Furthermore, a new oxide etching process is developed and analyzed which should serve as an alternative to the standard HCl process which generates volcano defects at some time. However, during the testing time the result does not differ in Nomarski, HRXRD, AFM and transport measurements. Here, long-time tests or etching and mounting in nitrogen atmosphere may provide new elaborate results. The main focus of this thesis is on the MBE growth and standard characterization of HgTe bulk layers and is discussed in chapter 6. Due to the tensile strained growth on lattice mismatched CdTe, HgTe bulk opens up a band gap of around 22 meV at the G-point and exhibits therefore its topological surface states. The analysis of surface condition, roughness, crystalline quality, carrier density and mobility via Nomarski, AFM, XPS, HRXRD and transport measurements is therefore included in this work. Layer thickness dependence of carrier density and mobility is identified for bulk layer grown directly on CdTe substrates. So, there is no clear correlation visible between HgTe layer thickness and carrier density or mobility. So, the carrier density is almost constant around 1x10^11 cm^(-2) at 0 V gate voltage. The carrier mobility of these bulk samples however scatters between 5 000 and 60 000 cm^2/Vs almost randomly. Further experiments should be made for a clearer understanding and therefore the avoidance of unusable bad samples.But, other topological insulator materials show much higher carrier densities and lower mobility values. For example, Bi2Se3 exhibits just density values around 1019 cm^(-2) and mobility values clearly below 5000 cm2/Vs. The carrier density however depends much on lithography and surface treatment after growth. Furthermore, the relaxation behavior and critical thickness of HgTe grown on CdTe is determined and is in very good agreement with theoretical prediction (d_c = 155 nm). The embedding of the HgTe bulk layer between HgCdTe layers created a further huge improvement. Similar to the quantum well structures the carrier mobility increases immensely while the carrier density levels at around 1x10^11 cm^(-2) at 0 V gate voltage as well. Additionally, the relaxation behavior and critical thickness of these barrier layers has to be determined. HgCdTe grown on commercial CdTe shows a behavior as predicted except the critical thickness which is slightly higher than expected (d_c = 850 nm). Otherwise, the relaxation of HgCdTe grown on CdTe/GaAs:Si occurs in two parts. The layer is fully strained up to 250 nm. Between 250 nm and 725 nm the HgCdTe film starts to relax randomly up to 10 %. The relaxation behavior for thicknesses larger than 725 nm occurs than linearly to the inverse layer thickness. A explanation is given due to rough interface conditions and crystalline defects of the CdTe/GaAs:Si compared to the commercial CdTe substrate. HRXRD and AFM data support this statement. Another point is that the HgCdTe barriers protect the active HgTe layer and because of the high carrier mobilities the Hall measurements provide new transport data which have to be interpreted more in detail in the future. In addition, HgTe bulk samples show very interesting transport data by gating the sample from the top and the back. It is now possible to manipulate the carrier densities of the top and bottom surface states almost separately. The back gate consisting of the n-doped GaAs substrate and the thick insulating CdTe buffer can tune the carrier density for Delta(n) ~ 3x10^11 cm^(-2). This is sufficient to tune the Fermi energy from the p-type into the n-type region [138]. In this thesis it is shown that strained HgTe bulk layers exhibit superior transport data by embedding between HgCdTe barrier layers. The n-doped GaAs can here serve as a back gate. Furthermore, MBE growth of high crystalline, undoped HgTe quantum wells shows also new and extended transport output. Finally, it is notable that due to the investigated CdTe growth on GaAs the Hg-based heterostructure MBE growth is partially independent from commercial suppliers. / In der vorliegenden Dissertation wurde das MBE-Wachstum von HgTe Strukturen erforscht und die anschließende Probencharakterisierung durchgeführt und diskutiert. Durch die erste experimentelle Entdeckung des Quanten-Spin-Hall-Effekts (QSHE) in HgTe Quantentrögen hat dieses Materialsystem großes Interesse im Gebiet der Spintronics erfahren. Aufgrund der langen Wachstumshistorie von quecksilberbasierenden Heterostrukturen am Lehrstuhl Experimentelle Physik III der Universität Würzburg sind die Voraussetzungen ausgesprochen gut, um dieses Materialsystem sehr ausführlich und auch in neue Richtungen hin zu untersuchen. Da vor dieser Doktorarbeit fast ausschließlich dotierte HgTe Quantentröge auf verschiedenen Substratorientierungen gewachsen wurden, beschäftigte sich diese Dissertation nun mit dem MBE-Wachstum von undotierten HgTe Quantentrögen, oberflächennahen Quantentrögen und dreidimensionalen Volumenkristallen. Alle quecksilberbasierenden Schichten wurden hierzu auf CdTe Substraten gewachsen, welche tensile Verspannung in den Schichten erzeugten und lieferten daher neue physikalische Effekte. In der selben Zeit wurde weiterhin das Wachstum von (001) CdTe auf n-dotiertem (001) GaAs:Si erforscht, da der japanische Zulieferer der CdTe Substrate eine Lieferengpass hatte aufgrund des Tohoku Erdbebens und seinen verheerenden Folgen im Jahr 2011. Die Erforschung des MBE-Wachstums von (001) CdTe auf (001) GaAs:Si wird im Kapitel 4 behandelt. Zuerst wurde hier die Oberflächenvorbereitung des GaAs:Si Substrates durch thermische Desorption untersucht und ausgewertet. Es stellte sich heraus, dass schnelle, thermische Desorption des GaAs - Oxides mit anschließendem Abkühlen in Zn Atmosphäre die besten Ergebnisse für das spätere CdTe durch kleine Löcher an der Oberfläche liefert, während zum Beispiel ein glatter GaAs Puffer das CdTe Wachstum verschlechtert. Der folgende ZnTe Film verschafft die gewünschte (001) Wachstumsrichtung für CdTe und weist bei 30 Sekunden Wachstumszeit bei einem Flussverhältnis von Zn/Te ~ 1/1.2 die besten Endergebnisse für CdTe auf. Jedoch war die Haupterneuerung hier die Optimierung des CdTe Wachstums. Dafür wurde ein komplexer Wachstumsprozess entwickelt und etabliert. Dieser optimierte CdTe Wachstumsprozess lieferte Ergebnisse von einer RMS Rauigkeit von ungefähr 2.5 nm und FWHMWerte der HRXRD w-Scans von 150 arcsec. Die Defektätzdichte-Messung zeigte weiterhin, dass die Oberflächenkristallinität vergleichbar mit kommerziell erwerbbaren CdTe Substraten ist (um 1x10^4 cm^(-2)). Des Weiteren ist kein niedrigerer Wert für die Halbwertsbreite des w-Scans in der Literatur für diese Wachstumsrichtung aufgeführt. Dies spiricht ebenfalls für die hohe Qualität der Schichten. Jedoch ist dieser Wachstumsprozess noch nicht endgültig ausgereift und bietet weiterhin noch Platz für Verbesserungen. Das Wachstum von undotierten HgTe Quantentrögen war ebenso eine neue Forschungsrichtung im Gegensatz zu den dotierten HgTe Quantentrögen, die in der Vergangenheit gewachsen wurden. Das Ziel hierbei, die Ladungsträgerdichte zu verringern, wurde erreicht und daher ist es nun möglich, Transportexperimente sowohl im n- als auch im p-Regime durchzuführen, indem eine Gatespannung angelegt wird. Des Weiteren experimentierten andere Arbeitsgruppen mit diesen Quantentrögen, bei denen die Fermi Energie in der Bandlücke liegt [143]. Außerdem wurde das sehr präzise MBE Wachstum anhand von symmetrischen HgTe Quantentrögen und ihren HRXRD Charakterisierungen behandelt. Daher kann nun die Quantentrogdicke präzise auf 0,3 nm angegeben werden. Die Transportergebnisse von verschieden dicken Quantentrögen zeigten, dass die Ladungsträgerdichte und Beweglichkeit mit steigender HgTe Schichtdicke zunimmt. Jedoch wurde auch herausgefunden, dass sich die Bandlücke von HgTe Quantentrögen indirekt bei einer Dicke von 11.6 nm schließt. Dies wird durch das verspannte Wachstum auf CdTe Substraten verursacht. Überdies wurden oberflächennahe Quantentröge untersucht. Diese Quantentröge besitzen keine oder nur eine sehr dünne HgCdTe Deckschicht. Allerdings verringerte Oxidation und Oberflächenverschmutzung hier die Ladungsträgerbeweglichkeit dramatisch und eine HgCdTe Schicht von ungefähr 5 nm lieferte ansprechende Transportergebnisse für Supraleiter, die den topologischen Isolator kontaktieren. Eine komplett neue Errungenschaft war die Realisierung, via MBE, HgTe Quantentröge auf CdTe/GaAs:Si Substrate zu wachsen. Dies ging einher mit der Optimierung des CdTe Wachstums auf GaAs:Si. Es zeigte sich, dass HgTe Quantentröge, die in-situ auf optimierten CdTe/GaAs:Si gewachsen wurden, sehr schöne Transportergebnisse mit deutlichen Hall Quantisierungen, SdH Oszillationen, niedrigen Ladungsträgerdichten und Beweglichkeiten bis zu 500 000 cm^2/Vs erreichen. Des Weiteren wurde ein neues Oxidätzverfahren entwickelt und untersucht, welches als Alternative zum Standard-HCl-Prozess dienen sollte, da dieses manchmal vulkan-artige Defekte hervorruft. Jedoch ergab sich kein Unterschied in den Nomarski, HRXRD, AFM und Transportexperimenten. Hier könnten vielleicht Langzeittests oder Ätzen und Befestigen in Stickstoffatmosphäre neue, gewinnbringende Ergbnisse aufzeigen. Der Hauptfokus dieser Doktorarbeit lag auf dem MBE Wachstum und der Standardcharakterisierung von HgTe Volumenkristallen und wurde in Kapitel 6 diskutiert. Durch das tensil verpannte Wachstum auf CdTe entsteht für HgTe als Volumenkristall eine Bandlücke von ungefähr 22 meV am G Punkt und zeigt somit seine topologischen Oberflächenzustände. Die Analyse der Oberfächenbeschaffenheit, der Rauigkeit, der kristallinen Qualität, der Ladungsdrägerdichte und Beweglichkeit mit Hilfe von Nomarski, AFM, XPS, HRXRD und Transportmessungen ist in dieser Arbeit anzutreffen. Außerdem wurde die Schichtdickenabhängigkeit von Ladungsträgerdichte und Beweglichkeit von HgTe Volumenkristallen, die direkt auf CdTe Substraten gewachsen wurden, ermittelt worden. So erhöhte sich durchschnittlich die Dichte und Beweglichkeit mit zunehmender HgTe Schichtdicke, aber die Beweglichkeit ging selten über μ ~ 40 000 cm^2/Vs hinaus. Die Ladungsträgerdichte n hing jedoch sehr von der Litographie und der Behandlung der Oberfläche nach dem Wachstum ab. Des Weiteren wurde das Relaxationsverhalten und die kritische Dicke bestimmt, welches sehr gut mit den theoretischen Vorhersagen übereinstimmt (dc = 155 nm). Das Einbetten des HgTe Volumenkristalls in HgCdTe Schichten brachte eine weitere große Verbesserung mit sich. Ähnlich wie bei den Quantentrögen erhörte sich die Beweglichkeit μ immens, während sich die Ladungsträgerdichte bei ungefähr 1x10^11 cm^(-2) einpendelte. Zusätzlich wurde auch hier das Relaxationsverhalten und die kritische Schichtdicke dieser Barrierenschichten ermittelt. HgCdTe, gewachsen auf kommerziellen CdTe Substraten, zeigte ein Verhalten ähnlich zu dem Erwarteten mit der Ausnahme, dass die kritische Schichtdicke leicht höher ist als die Vorhergesagte (dc = 850 nm). Auf der anderen Seite findet die Relaxation von HgCdTe auf CdTe/GaAs:Si zweigeteilt ab. Bis 250 nm ist die Schicht noch voll verspannt. Zwischen 250 nm und 725 nm beginnt die HgCdTe Schicht willkürlich bis zu 10 % zu relaxieren. Das Relaxationsverhalten für Dicken über 725 nm findet dann wieder linear zur invers aufgetragenen Schichtdicke statt. Eine Erklärung wurde durch das raue Interface der Schichten und der Defekte im Kristall von CdTe/GaAs:Si gegeben, im Vergleich zu den kommerziellen CdTe Substraten. HRXRD und AFM Ergebnisse belegten diese Aussage. Die HgCdTe Barrieren schützen die aktive HgTe Schicht und daher liegen nach Hall Messungen aufgrund der hohen Ladungsträgerbeweglichkeiten neue Transportergbnisse vor, welche in der Zukunft ausführlicher interpretiert werden müssen. Darüber hinaus zeigten HgTe Volumenkristalle neue, interessante Transportergebnisse durch das gleichzeitige Benutzen eines Top- und Backgates. Es ist nun möglich, die Ladungsträger der oberen und unteren Oberflächenzustände nahezu getrennt zu verändern und zu ermitteln. Das Backgate, bestehend aus dem n-dotierten GaAs:Si Substrate und dem dicken isolierenden CdTe Puffer, kann die Ladungsträgerdichte um ungefähr Delta(n) ~ 3x10^11 cm^(-2) varieren. Das ist ausreichend, um die Fermi Energie vom p- in den n-Bereich einzustellen [138]. In dieser Dissertation wurde also gezeigt, dass verspannte HgTe Volumenkristalle durch das Einbetten in HgCdTe Barrieren neue Transportergebnisse liefern. Das n-dotierte GaAs konnte hierbei als Backgate genutzt werden. Des Weiteren zeigte das MBE Wachstum von hochkristallinen , undotiereten HgTe Quantentrögen ebenso neue und erweiterte Transportergebnisse. Zuletzt ist es bemerkenswert, dass durch das erforschte CdTe Wachstum auf GaAs das MBE Wachstum von quecksilberbasierenden Heterostrukturen auf CdTe Substraten teilweise unabhänigig ist von kommerziellen Zulieferbetrieben.
13

Transport Phenomena in Bi\(_2\)Se\(_3\) and Related Compounds / Transport Phänomene in Bi\(_2\)Se\(_3\) und verwandten Materialien

Grauer, Stefan January 2018 (has links) (PDF)
One of the most significant technological advances in history was driven by the utilization of a new material class: semiconductors. Its most important application being the transistor, which is indispensable in our everyday life. The technological advance in the semiconductor industry, however, is about to slow down. Making transistors ever smaller to increase the performance and trying to reduce and deal with the dissipative heat will soon reach the limits dictated by quantum mechanics with Moore himself, predicting the death of his famous law in the next decade. A possible successor for semiconductor transistors is the recently discovered material class of topological insulators. A material which in its bulk is insulating but has topological protected metallic surface states or edge states at its boundary. Their electrical transport characteristics include forbidden backscattering and spin-momentum-locking with the spin of the electron being perpendicular to its momentum. Topological insulators therefore offer an opportunity for high performance devices with low dissipation, and applications in spintronic where data is stored and processed at the same point. The topological insulator Bi\(_2\)Se\(_3\) and related compounds offer relatively high energy band gaps and a rather simple band structure with a single dirac cone at the gamma point of the Brillouin zone. These characteritics make them ideal candidates to study the topological surface state in electrical transport experiments and explore its physics. / Einer der wichtigsten technologischen Fortschritte der Geschichte wurde von der Nutzung einer neuen Materialklasse getrieben: Halbleitern. Ihre wichtigste Anwendung ist der Transistor, welcher unverzichtbar für unseren Alltag geworden ist. Allerdings ist der technologische Fortschritt in der Halbleiterindustrie dabei sich zu verlangsamen. Versuche die Transistoren immer kleiner zu machen und die Abwärme zu regulieren und zu reduzieren werden bald ihr, durch die Quantenmechanik vorgeschriebenes, Ende erreichen. Moore selbst hat schon das Ende seines berühmten Gesetzes für das nächste Jahrzehnt vorhergesagt. Ein möglicher Nachfolger für Halbleitertransistoren ist die kürzlich entdeckte Materialklasse der topologischen Isolatoren. Ein Material, dass in seinem Volumen isolierend ist, aber an seinen Grenzen durch die Topologie geschützte metallische Oberflächenzustände oder Randkanäle hat. Deren elektrischen Transporteigenschaften umfassen unterdrückte Rückstreuung und Spin-Impuls-Kopplung, wobei der Spin des Elektrons senkrecht zu seinem Impuls ist. Topologische Isolatoren bieten daher die Möglichkeit für hochleistungsfähige Bauteile mit niedrigem Widerstand und für Anwendungen in der Spintronik, in der Daten an der gleichen Stelle gespeichert und prozessiert werden. Der topologische Isolator Bi\(_2\)Se\(_3\) und verwandte Materialien weisen eine relativ hohe Energielücke und eine eher einfache Bandstruktur mit einem einzigen Dirac-Kegel am Gammapunkt der Brilloiun Zone auf. Diese Eigenschaften machen sie zu idealen Kandidaten um den topologischen Oberflächenzustand in elektrischen Transportexperimenten zu untersuchen und seine neue Physik zu entdecken.
14

Induced topological superconductivity in HgTe based nanostructures / Induzierte topologische Supraleitung in HgTe basierten Nanostrukturen

Wiedenmann, Jonas January 2018 (has links) (PDF)
This thesis describes the studies of topological superconductivity, which is predicted to emerge when pair correlations are induced into the surface states of 2D and 3D topolog- ical insulators (TIs). In this regard, experiments have been designed to investigate the theoretical ideas first pioneered by Fu and Kane that in such system Majorana bound states occur at vortices or edges of the system [Phys. Rev. Lett. 100, 096407 (2008), Phys. Rev. B 79, 161408 (2009)]. These states are of great interest as they constitute a new quasiparticle which is its own antiparticle and can be used as building blocks for fault tolerant topological quantum computing. After an introduction in chapter 1, chapter 2 of the thesis lays the foundation for the understanding of the field of topology in the context of condensed matter physics with a focus on topological band insulators and topological superconductors. Starting from a Chern insulator, the concepts of topological band theory and the bulk boundary corre- spondence are explained. It is then shown that the low energy Hamiltonian of mercury telluride (HgTe) quantum wells of an appropriate thickness can be written as two time reversal symmetric copies of a Chern insulator. This leads to the quantum spin Hall effect. In such a system, spin-polarized one dimensional conducting states form at the edges of the material, while the bulk is insulating. This concept is extended to 3D topological insulators with conducting 2D surface states. As a preliminary step to treating topological superconductivity, a short review of the microscopic theory of superconductivity, i.e. the theory of Bardeen, Cooper, and Shrieffer (BCS theory) is presented. The presence of Majorana end modes in a one dimensional superconducting chain is explained using the Kitaev model. Finally, topological band insulators and conventional superconductivity are combined to effectively engineer p-wave superconductivity. One way to investigate these states is by measuring the periodicity of the phase of the Josephson supercurrent in a topological Josephson junction. The signature is a 4π-periodicity compared to the 2π-periodicity in conventional Josephson junctions. The proof of the presence of this effect in HgTe based Josephson junction is the main goal of this thesis and is discussed in chapters 3 to 6. Chapter 3 describes in detail the transport of a 3D topological insulator based weak link under radio-frequency radiation. The chapter starts with a review of the state of research of (i) strained HgTe as 3D topological insulator and (ii) the progress of induc- ing superconducting correlations into the topological surface states and the theoretical predictions of 3D TI based Josephson junctions. Josephson junctions based on strained HgTe are successfully fabricated. Before studying the ac driven Josephson junctions, the dc transport of the devices is analysed. The critical current as a function of temperature is measured and it is possible to determine the induced superconducting gap. Under rf illumination Shapiro steps form in the current voltage characteristic. A missing first step at low frequencies and low powers is found in our devices. This is a signature of a 4π-periodic supercurrent. By studying the device in a wide parameter range - as a 147148 SUMMARY function of frequency, power, device geometry and magnetic field - it is shown that the results are in agreement with the presence of a single gapless Andreev doublet and several conventional modes. Chapter 4 gives results of the numerical modelling of the I −V dynamics in a Josephson junction where both a 2π- and a 4π-periodic supercurrents are present. This is done in the framework of an equivalent circuit representation, namely the resistively shunted Josephson junction model (RSJ-model). The numerical modelling is in agreement with the experimental results in chapter 3. First, the missing of odd Shapiro steps can be understood by a small 4π-periodic supercurrent contribution and a large number of modes which have a conventional 2π-periodicity. Second, the missing of odd Shapiro steps occurs at low frequency and low rf power. Third, it is shown that stochastic processes like Landau Zener tunnelling are most probably not responsible for the 4π contribution. In a next step the periodicity of Josephson junctions based on quantum spin Hall insulators using are investigated in chapter 5. A fabrication process of Josephson junctions based on inverted HgTe quantum wells was successfully developed. In order to achieve a good proximity effect the barrier material was removed and the superconductor deposited without exposing the structure to air. In a next step a gate electrode was fabricated which allows the chemical potential of the quantum well to be tuned. The measurement of the diffraction pattern of the critical current Ic due to a magnetic field applied perpendicular to the sample plane was conducted. In the vicinity to the expected quantum spin Hall phase, the pattern resembles that of a superconducting quantum interference device (SQUID). This shows that the current flows predominantly on the edges of the mesa. This observation is taken as a proof of the presence of edge currents. By irradiating the sample with rf, missing odd Shapiro steps up to step index n = 9 have been observed. This evidences the presence of a 4π-periodic contribution to the supercurrent. The experiment is repeated using a weak link based on a non-inverted HgTe quantum well. This material is expected to be a normal band insulator without helical edge channels. In this device, all the expected Shapiro steps are observed even at low frequencies and over the whole gate voltage range. This shows that the observed phenomena are directly connected to the topological band structure. Both features, namely the missing of odd Shapiro steps and the SQUID like diffraction pattern, appear strongest towards the quantum spin Hall regime, and thus provide evidence for induced topological superconductivity in the helical edge states. A more direct way to probe the periodicity of the Josephson supercurrent than using Shapiro steps is the measurement of the emitted radiation of a weak link. This experiment is presented in chapter 6. A conventional Josephson junction converts a dc bias V to an ac current with a characteristic Josephson frequency fJ = eV /h. In a topological Josephson junction a frequency at half the Josephson frequency fJ /2 is expected. A new measurement setup was developed in order to measure the emitted spectrum of a single Josephson junction. With this setup the spectrum of a HgTe quantum well based Josephson junction was measured and the emission at half the Josephson frequency fJ /2 was detected. In addition, fJ emission is also detected depending on the gate voltage and detection frequency. The spectrum is again dominated by half the Josephson emission at low voltages while the conventional emission is determines the spectrum at high voltages. A non-inverted quantum well shows only conventional emission over the whole gateSUMMARY 149 voltage and frequency range. The linewidth of the detected frequencies gives a measure on the lifetime of the bound states: From there, a coherence time of 0.3–4ns for the fJ /2 line has been deduced. This is generally shorter than for the fJ line (3–4ns). The last part of the thesis, chapter 7, reports on the induced superconducting state in a strained HgTe layer investigated by point-contact Andreev reflection spectroscopy. For the experiment, a HgTe mesa was fabricated with a small constriction. The diameter of the orifice was chosen to be smaller than the mean free path estimated from magne- totransport measurements. Thus one gets a ballistic point-contact which allows energy resolved spectroscopy. One part of the mesa is covered with a superconductor which induces superconducting correlations into the surface states of the topological insulator. This experiment therefore probes a single superconductor normal interface. In contrast to the Josephson junctions studied previously, the geometry allows the acquisition of energy resolved information of the induced superconducting state through the measurement of the differential conductance dI/dV as a function of applied dc bias for various gate voltages, temperatures and magnetic fields. An induced superconducting order parame- ter of about 70µeV was extracted but also signatures of the niobium gap at the expected value around Δ Nb ≈ 1.1meV have been found. Simulations using the theory developed by Blonder, Tinkham and Klapwijk and an extended model taking the topological surface states into account were used to fit the data. The simulations are in agreement with a small barrier at the topological insulator-induced topological superconductor interface and a high barrier at the Nb to topological insulator interface. To understand the full con- ductance curve as a function of applied voltage, a non-equilibrium driven transformation is suggested. The induced superconductivity is suppressed at a certain bias value due to local electron population. In accordance with this suppression, the relevant scattering regions change spatially as a function of applied bias. To conclude, it is emphasized that the experiments conducted in this thesis found clear signatures of induced topological superconductivity in HgTe based quantum well and bulk devices and opens up the avenue to many experiments. It would be interesting to apply the developed concepts to other topological matter-superconductor hybrid systems. The direct spectroscopy and manipulation of the Andreev bound states using circuit quantum electrodynamic techniques should be the next steps for HgTe based samples. This was already achieved in superconducting atomic break junctions by the group in Saclay [Science 2015, 349, 1199-1202 (2015)]. Another possible development would be the on-chip detection of the emitted spectrum as a function of the phase φ through the junction. In this connection, the topological junction needs to be shunted by a parallel ancillary junction. Such a setup would allow the current phase relation I(φ) directly and the lifetime of the bound states to be measured directly. By coupling this system to a spectrometer, which can be another Josephson junction, the energy dependence of the Andreev bound states E(φ) could be obtained. The experiments on the Andreev reflection spectroscopy described in this thesis could easily be extended to two dimensional topological insulators and to more complex geometries, like a phase bias loop or a tunable barrier at the point-contact. This work might also be useful for answering the question how and why Majorana bound states can be localized in quantum spin Hall systems. / Die vorliegende Dissertation befasst sich mit der experimentellen Untersuchung von topologischer Supraleitung, die durch die Kombination von konventionellen Supraleitern mit 2D- und 3D- topologischen Isolatoren (TI) entsteht. Diesbezüglich wurden Experi- mente durchgeführt, die auf zwei bahnbrechenden Arbeiten von Fu und Kane [Phys. Rev. Lett. 100, 096407 (2008), Phys. Rev. B 79, 161408 (2009)] aufbauen. Diesen zufolge wird in supraleitenden topologischen Isolatoren ein neuartiges Quasiteilchen, ein sogenanntes Majorana-Fermion, vorhergesagt. Das große Interesse an diesem Teilchen beruht auf des- sen besonderen Eigenschaften. Es sind Fermionen mit halbzahligen Spin, jedoch besitzen sie keine Ladung und es ist gleichzeitig sein eigenes Antiteilchen. Darüber hinaus besitzt das Teilchen im Vergleich zu konventionellen Fermionen eine andere Austauschstatistik und zählt daher zu den sogenannten nicht-abelschen Anyonen. Aufgrund dieser Eigen- schaften wurde vorhergesagt, dass sie für weniger fehleranfällige Quantenbits als Bauteile für einen Quantencomputer verwendet werden können. Nach einer Einleitung in Kapitel 1 folgt in Kapitel 2 eine Einführung in das Konzept von Topologie in der Festkörperphysik. Der Schwerpunkt liegt dabei auf zwei Materialklassen, topologischen Isolatoren und topologische Supraleiter. Zunächst wird ein Zweibandmo- dell, der Chern-Isolator, beschrieben, um das Konzept von topologischen Isolatoren und die Entstehung von Oberflächenzuständen darzulegen. Es ist möglich die Bandstruktur von Quecksilbertellurid- (HgTe-) Quantentrögen als zwei zeitumkehrinvariante Kopien des Chern-Isolators zu interpretieren, was zu einem 2D topologischen Isolator führt. Das Konzept von 2D-TIs wird auf drei Dimensionen erweitert. Eine Einführung in konventio- nelle Supraleitung und insbesondere die mikroskopische Theorie von Bardeen, Cooper und Schrieffer dient einem pädagogischen Zugang zur topologischen Supraleitung. Eine eindimensionale supraleitenden Kette, entwickelt von Alexei Kitaev, dient der Erklärung für die Entstehung von Majorana-Fermionen in p-Wellen Supraleitern. Es ist möglich diesen Zustand durch die Kombination von konventionellen Supraleitern und topologi- schen Isolatoren zu verwirklichen. In dieser Dissertation wird die erwartet topologische Supraleitung in einem sogenannten Josephson-Kontakt untersucht. Dabei wurde vorher- gesagt, dass in einem “topologischen Josephson-Kontakt”die Phase des Suprastromes eine 4π-Periodizität besitzt, während ein normaler Josephson-Kontakt 2π-periodisch ist. Ziel dieser Arbeit ist der experimentelle Nachweis der 4π-Periodizität des Suprastroms in Josephson-Kontakten, die auf HgTe-Bauelementen beruhen. Als Methodik eignet sich die Messung der Shapiro-Plateaus und der Emission des Josephson-Kontaktes an, die ausführlich in den Kapiteln 3 bis 6 werden. In Kapitel 3 wird der Transport in Josephson-Kontakten, die auf dem dreidimensio- nalen topologischen Isolator HgTe beruhen unter Einfluss von Mikrowellenstrahlung detailliert ausgeführt. Dieser Teil beginnt mit einem Überblick über die Eigenschaften von HgTe als dreidimensionaler topologischer Isolator und zeigt insbesondere den Nachweis der Oberfächenleitung von relativistischen Elektronen auf. Des Weiteren wird der Stand der Forschung von Josephson-Kontakten auf diesem Materialsystem dargelegt. In solchen Strukturen werden nämlich aufgrund von Majorana-Fermionen gebundene Andreev- Zustände erwartet, welche sich in der Mitte der supraleitenden Bandlücke (bei null Energie) kreuzen. Sie werden als “gapless Andreev Bound States”bezeichnet. Die Existenz dieser Zustände kann durch den Nachweis einer 4π-Periodizität der Phase des Supra- stroms bewiesen werden. Da die endliche Lebensdauer dieser Zustände “langsamen”dc- Messungen den Nachweis der Periodizität nicht erlauben, wird Strahlung im Gigahertz Frequenzbereich verwendet. Josephson-Kontakte aus 3D-HgTe-Heterostrukturen werden erfolgreich lithografiert. Zunächst werden die Strukturen mit dc-Messungen charakte- risiert und es wird gezeigt, dass der Suprastrom einen Josephson-Effekt aufweist. Die Temperaturabhängigkeit des kritischen Stroms wird simuliert, wodurch die Bestimmung der Größe der induzierten supraleitenden Bandlücke ermöglicht wird. Durch Mikrowel- lenstrahlung entstehen Shapiro-Plateaus in der Strom-Spannungskennlinie I −V -Kurve. Der Spannungsabstand von zwei aufeinander folgenden Plateaus spiegelt die Periodizität des Josephsonstroms wider. Zu erwarten wäre, dass der Abstand in einem topologischen Josephson-Kontakt im Vergleich zu einem konventionellen Josephson-Kontakt doppelt so groß ist (oder anders formuliert: die ungeradzahligen Plateau-Indizes fehlen). In den Strom-Spannungskennlinien wird jedoch beobachtet, dass der erste erwartete Schritt ausbleibt. Alle höheren ungeradzahligen Schritte sind sichtbar. Durch die Untersuchung des Phänomens als Funktion von Mikrowellenfrequenz, Mikrowellenamplitude, Magnet- feldstärke und Probengeometrie wird argumentiert, dass die Ergebnisse der Experimente mit einem topologischen Andreev-Zustand und einer großen Zahl konventioneller Moden vereinbar sind. Um die experimentellen Ergebnisse aus Kapitel 3 nachzuvollziehen, werden in Kapitel 4 die I −V -Kennlinie eines Josephson-Kontaktes mit einer linearen Kombination eines 2π- und eines 4π-periodischen Suprastroms unter Mikrowellenstrahlung numerisch simuliert. Dies erfolgt durch ein Netzwerkmodell, welches aus einem Josephson-Kontakt in Parallelschaltung zu einem ohmschen Widerstand besteht (RSJ-Modell). Die Ergebnisse aus Kapitel 3 können nur durch das Vorhandensein eines 4π-periodischem Suprastroms I4π eindeutig numerisch simuliert werden. Darüber hinaus wird herausgestellt, dass eine Kopplung des Systems an die 4π-periodische Komponente möglich ist, obwohl der Beitrag zum Gesamtstrom Ic sehr klein ist (I4π « Ic ). Die Grundlage für die Experimente in Kapitel 5 bildet ein Josephson-Kontakt, der auf einem invertierten HgTe-Quantentrog basiert. Dieser besitzt helikale Randkanäle, welche mit Supraleitern topologisch geschützte Andreev-Zustände formen. Hierfür ist zuerst ein neuer Lithographieprozess zur Herstellung der Proben entwickelt worden. Da sich der HgTe-Quantentrog unter einer Hg0.3Cd0.7Te-Barriere befindet, muss diese für eine gute induzierte Supraleitung lokal entfernt und der Supraleiter aufgetragen werden, ohne das Vakuum zu brechen. Zur Variation der Ladungsträgerdichte im Josephson-Kontakt wird eine Feldeffektelektrode auf der Struktur platziert. Die Messung des Beugungsmusters des kritischen Stroms als Funktion des Magnetfeldes erlaubt es, die Stromverteilung in der Probe zu untersuchen. Das Beugungsmuster ähnelt dem eines supraleitenden Quanteninterferenzbauelement [engl. Superconducting Quantum Interference Device: (SQUID)] und zeigt, dass der Strom vorwiegend am Rand der Probe fließt. Durch die Bestrahlung mit Mikrowellen werden fehlende ungeradzahlige Shapiro-Plateaus bis zum Stufenindex n = 9 beobachtet. Dies verdeutlicht, dass der Strom eine 4π-periodischen Beitrag aufweist. Das Experiment wird mit einem nicht-invertierten HgTe-Quantentrog wiederholt. Dieser ist nicht in der Quanten-Spin-Hall-Phase und zeigt über den gesamten Parameterbereich alle erwarteten Shapiro-Plateaus, was beweist, dass die Topologie der Probe eine wichtige Eigenschaft ist, um die 4π-Periodizität zu beobachten. Beide Effekte, das SQUID-Beugungsmuster und die verschwindenden ungeradzahligen Shapiro- Plateaus, sind in der Nähe der Quanten-Spin-Phase am sichtbarsten und können daher als Beweis für induzierte topologische Supraleitung in spinpolarisierten Randkanälen interpretiert werden. Eine Messmethode zur direkten Bestimmung der Periodizität des Suprastromes, an- ders als die Verwendung von Shapiro-Plateaus, ist die Messung der Josephson-Emission, was in Kapitel 6 beschrieben wird. Ein topologischer Josephson-Kontakt emittiert Strah- lung bei der halben Josephsonfrequenz f J /2 aufgrund der 4π-Periodizität des Joseph- sonstromes. Hierfür wird ein neuer experimenteller Aufbau entwickelt, um das kleine Emissionssignal eines einzelnen Josephson-Kontaktes zu verstärken. Dieser neue Aufbau erlaubt es, das Spektrum eines invertierten HgTe-Quantentrog zu messen und eine Emis- sion bei f J /2 zu detektieren. Je nach Ladungsträgerdichte und Detektionfrequenz wird auch gewöhnliche Emission bei f J im Spektrum beobachtet. Generell dominiert aber bei niedriger Spannung die f J /2-Emission und bei höheren Spannungen die f J . Da Spannung und ac-Frequenz durch die zweite Josephson-Gleichung proportional zueinander lässt sich das Verhalten mit den Ergebnissen der Shapiro-Plateau-Messungen vereinbaren. Darüber hinaus ist aus der Linienbreite der Emissionssignale eine Lebensdauer für die ABS in der Größenordnung von 0.3 − 4 ns für die f J /2-Emission und 3 − 4 ns für die f J - Emission abgeschätzt worden. Ein nicht-invertierter Quantentrog zeigt im Vergleich zum invertierten nur gewöhnliche Emission bei f J über den gesamten zugänglichen Frequenz- und Ladungsträgerbereich. Im letzten Teil der Arbeit, in Kapitel 7, wird die in den 3D-topologischen Isolator HgTe induzierte Supraleitung mit Hilfe von Andreev-Punktkontaktspektroskopie unter- sucht. Hierfür wird eine HgTe-Struktur mit einer Verengung fabriziert, deren Durchmesser kleiner als die mittlere freie Weglänge der topologischen Oberflächenzustände ist und somit eine energieabhängige Spektroskopie des Zustandes erlaubt. Auf einer Seite der Verengung werden supraleitende Paarkorrelationen durch einen gewöhnlichen Supralei- ter Niob induziert. Diese Struktur ermöglicht daher die Untersuchung der Grenzfläche zwischen einem Supraleiter und einem Normalleiter (topologischer Isolator). Durch die Messung der differentiellen Leitfähigkeit d I /dV als Funktion der dc-Spannung ist es möglich die Energieabhängigkeit der Supraleitung zu untersuchen. Eine induzierte supraleitenden Bandlücke von 70 µeV wird gefunden. Die Leitfähigkeit zeigt Signatu- ren einer weiteren supraleitende Bandlücke des konventionellen Supraleiters Niob von ∆Nb ≈ 1.1 meV. Die Leitfähigkeit wird zum einen mit der Theorie von Blonder, Tinkham und Klapwijk modelliert und zum anderen mit einem erweiterten Modell, welches die 2D Oberflächenzustände des topologischen Isolators berücksichtigt simuliert. Für die Grenzfläche topologischer Isolator mit topologischem Supraleiter wird eine hohe Trans- missionswahrscheinlichkeit (niedrige Barriere) festgestellt, während an der Grenzfläche zwischen dem konventionellen Supraleiter und dem topologischen Isolator eine hohe Barriere in Übereinstimmung mit dem Modell war. Der Transportmechanismus wird durch eine Unterdrückung der induzierten Supraleitung durch eine Nichtgleichgewichts- verteilung der Zustände als Funktion der Spannung erklärt. Die vorliegende Dissertation konnte klare Signaturen von induzierter topologischer Supraleitung in Josephson-Kontakten auf Basis von HgTe-Quantentrögen und Volumen- material aufzeigen. Sie kann auch als Ausgangspunkt für eine große Anzahl von weiter- führenden Experimenten dienen. Die hier entwickelte Technik und auch Theorie kann auf andere topologische Zustände in Verbindung mit Supraleitern angewandt werden. Ein weiteres Experiment für HgTe-Strukturen ließe sich beispielsweise mit Hilfe von su- praleitenden Resonatoren die Spektroskopie und Manipulation der mikroskopischen topologischen Andreev-Zustände durchführen. Diese Technik wurde schon erfolgreich von Janvier et al . auf mechanisch kontrollierten supraleitenden Bruchkontakten ange- wandt [Science 2015, 349, 1199-1202 (2015)]. Eine alternative Technik zur Spektroskopie der Andreev Zustände benötigt konventionelle Josephson-Kontakte in Kombination mit topologischen Kontakten. Die konventionellen Kontakte erlauben die Kontrolle der supra- leitenden Phase und dienen als Spektrometer. Die Andreev-Punktkontaktspektroskopie kann auf zweidimensionale topologische Isolatoren erweitert werden. Auch kann ei- ne supraleitende Schleife, welche die Kontrolle über die Phase und eine veränderbare Barriere ermöglicht, neue Einblicke in die Transportmechanismen geben. Solche Un- tersuchungen bieten Ansatzpunkte für die Lokalisierung von Majorana-Zuständen in Quanten-Spin-Hall-Systemen.
15

Charge and Spin Transport in Topological Insulator Heterojunctions / Ladungs- und Spintransport in Topologischen Isolator Heterojunctions

Reinthaler, Rolf Walter January 2015 (has links) (PDF)
Over the last decade, the field of topological insulators has become one of the most vivid areas in solid state physics. This novel class of materials is characterized by an insulating bulk gap, which, in two-dimensional, time-reversal symmetric systems, is closed by helical edge states. The latter make topological insulators promising candidates for applications in high fidelity spintronics and topological quantum computing. This thesis contributes to bringing these fascinating concepts to life by analyzing transport through heterostructures formed by two-dimensional topological insulators in contact with metals or superconductors. To this end, analytical and numerical calculations are employed. Especially, a generalized wave matching approach is used to describe the edge and bulk states in finite size tunneling junctions on the same footing. The numerical study of non-superconducting systems focuses on two-terminal metal/topological insulator/metal junctions. Unexpectedly, the conductance signals originating from the bulk and the edge contributions are not additive. While for a long junction, the transport is determined purely by edge states, for a short junction, the conductance signal is built from both bulk and edge states in a ratio, which depends on the width of the sample. Further, short junctions show a non-monotonic conductance as a function of the sample length, which distinguishes the topologically non-trivial regime from the trivial one. Surprisingly, the non-monotonic conductance of the topological insulator can be traced to the formation of an effectively propagating solution, which is robust against scalar disorder. The analysis of the competition of edge and bulk contributions in nanostructures is extended to transport through topological insulator/superconductor/topological insulator tunneling junctions. If the dimensions of the superconductor are small enough, its evanescent bulk modes can couple edge states at opposite sample borders, generating significant and tunable crossed Andreev reflection. In experiments, the latter process is normally disguised by simultaneous electron transmission. However, the helical edge states enforce a spatial separation of both competing processes for each Kramers’ partner, allowing to propose an all-electrical measurement of crossed Andreev reflection. Further, an analytical study of the hybrid system of helical edge states and conventional superconductors in finite magnetic fields leads to the novel superconducting quantum spin Hall effect. It is characterized by edge states. Both the helicity and the protection against scalar disorder of these edge states are unaffected by an in-plane magnetic field. At the same time its superconducting gap and its magnetotransport signals can be tuned in weak magnetic fields, because the combination of helical edge states and superconductivity results in a giant g-factor. This is manifested in a non-monotonic excess current and peak splitting of the dI/dV characteristics as a function of the magnetic field. In consequence, the superconducting quantum spin Hall effect is an effective generator and detector for spin currents. The research presented here deepens the understanding of the competition of bulk and edge transport in heterostructures based on topological insulators. Moreover it proposes feasible experiments to all-electrically measure crossed Andreev reflection and to test the spin polarization of helical edge states. / Während des letzten Jahrzehnts haben sich topologische Isolatoren zu einem der aktivsten Bereiche der Festkörperphysik entwickelt. Diese neuartige Materialklasse charakterisiert sich durch einen isolierenden Volumenzustand, welcher, in zweidimensionalen und zeitumkehrinvarianten Systemen, durch helikale Randkanäle ergänzt wird. Diese Randkanäle machen topologische Isolatoren zu vielversprechenden Kandidaten für Anwendungen in den Bereichen der präzisen Spintronik und der topologischen Quantencomputer. Diese Doktorarbeit trägt zu der Realisierung dieser faszinierenden Konzepte bei, indem sie den Transport durch Heterostrukturen aus zweidimensionalen topologischen Isolatoren und Metallen oder Supraleitern analysiert. Hierfür werden analytische und numerische Methoden angewandt. Im Besonderen wird eine generalisierte Methode zum Wellenfunktionsanpassung an Grenzflächen verwendet, um Rand- und Volumenzustände simultan beschreiben zu können. Für die numerische Untersuchung nicht-supraleitender Systeme werden topologische Isolatoren als Tunnelbarrieren zwischen metallischen Kontakten betrachtet. Unerwarteterweise sind die Leitfähigkeiten von Rand- und Volumenzuständen nicht additiv. In langen und breiten Tunnelbarrieren wird der Transport ausschließlich durch die Randkanäle bestimmt. In kurzen Tunnelbarrieren hingegen ergibt sich die Leitfähigkeit aus einem Gemisch von Rand- und Volumenzuständen, welches von der Breite der Probe abhängt. In kurzen Tunnelbarrieren zeigt die Leitfähigkeit als Funktion der Probenlänge außerdem ein Maximum, welches das topologisch nicht-triviale Regime von dem topologisch trivialen Regime unterscheidet. Diese nicht-monotone Leitfähigkeit basiert auf der Formation einer effektiv propagierenden Mode, welche gegen Streuung durch nicht-magnetische Störstellen geschützt ist. Die Analyse des Zusammenspiels von Rand- und Volumenzuständen wird auf supraleitende Tunnelbarrieren zwischen zwei topologischen Isolatoren ausgeweitet. Wenn die räumlichen Dimensionen der Tunnelbarriere klein genug sind, können die entgegenlaufenden Randkanäle an gegenüberliegenden Rändern des topologischen Isolators durch die evaneszenten Volumenzustände des Supraleiters gekoppelt werden. Hierdurch kann eine nicht-lokale Andreev-Reflexion generiert und kontrolliert werden. In Experimenten wird dieser Prozess normalerweise durch simultane Elektrontransmission überlagert. Für einzelne Kramers-Partner jedoch forciert die Helizität der Randkanäle die räumliche Trennung beider Prozesse, was eine rein elektrische Messung der nicht-lokalen Andreev-Reflexion ermöglicht. Im Weiteren wird eine Studie über Hybridsysteme aus helikalen Randkanälen und konventionellen Supraleitern im magnetischen Feld, welches in der Ebene des zweidimensionalen topologischen Isolators liegt, präsentiert. Die Studie beschreibt den neuartigen supraleitenden Quanten-Spin-Hall-Effekt. Die hierfür charakteristischen Randkanäle bleiben selbst in endlichen Magnetfeldern helikal und gegen nicht-magnetische Störstellen geschützt. Gleichzeitig führt die Kombination von helikalen Randkanälen und Supraleitung zu einem riesigen Landé-Faktor, wodurch die supraleitende Bandlücke und der Magnetotransport dieser Systeme mit kleinen Magnetfeldern manipuliert werden kann. Dies kann durch einen nicht-monotonen supraleitenden Überschussstrom und ein aufgespaltenes Maximum der dI/dV -Charakteristik als Funktion des Magnetfeldes gemessen werden. In der Folge stellt der supraleitende Quanten-Spin-Hall-Effekt einen effektiven Generator und Detektor für Spinströme dar. Die hier präsentierte Forschung vertieft das Verständnis des Zusammenspiels von Rand- und Volumentransport in Heterostrukturen aus toplogischen Isolatoren. Außerdem werden realisierbare Experimente beschrieben, mit welchen die nicht-lokale Andreev-Reflexion rein elektrisch gemessen und die Spinpolarisierung der helikalen Randkanäle getestet werden können.
16

Nanolithography on Mercury Telluride / Nanolithographie auf Quecksilber Tellurid

Mühlbauer, Mathias Josef January 2015 (has links) (PDF)
Topological insulators belong to a new quantum state of matter that is currently one of the most recognized research fields in condensed matter physics. Strained bulk HgTe and HgTe/HgCdTe quantum well structures are currently one of few topological insulator material systems suitable to be studied in transport experiments. In addition HgTe quantum wells provide excellent requirements for the conduction of spintronic experiments. A fundamental requirement for most experiments, however, is to reliably pattern these heterostructures into advanced nano-devices. Nano-lithography on this material system proves to be challenging because of inherent temperature limitations, its high reactivity with various metals and due to its properties as a topological insulator. The current work gives an insight into why many established semiconductor lithography processes cannot be easily transferred to HgTe while providing alternative solutions. The presented developments include novel ohmic contacts, the prevention of metal sidewalls and redeposition fences in combination with low temperature (80 °C) lithography and an adapted hardmask lithography process utilizing a sacrificial layer. In addition we demonstrate high resolution low energy (2.5 kV) electron beam lithography and present an alternative airbridge gating technique. The feasibility of nano-structures on HgTe quantum wells is exemplarily verified in two separate transport experiments. We are first to realize physically etched quantum point contacts in HgTe/HgCdTe high mobility 2DEGs and to prove their controllability via external top-gate electrodes. So far quantum point contacts have not been reported in TI materials. However, these constrictions are part of many proposals to probe the nature of the helical quantum spin Hall edge channels and are suggested as injector and detector devices for spin polarized currents. To confirm their functionality we performed four-terminal measurements of the point contact conductance as a function of external gate voltage. Our measurements clearly exhibit quantized conductance steps in 2e2/h, which is a fundamental characteristic of quantum point contacts. Furthermore we conducted measurements on the formation and control of collimated electron beams, a key feature to realize an all electrical spin-optic device. In a second study several of the newly developed lithography techniques were implemented to produce arrays of nano-wires on inverted and non-inverted HgTe quantum well samples. These devices were used in order to probe and compare the weak antilocalization (WAL) in these structures as a function of magnetic field and temperature. Our measurements reveal that the WAL is almost an order of magnitude larger in inverted samples. This observation is attributed to the Dirac-like dispersion of the energy bands in HgTe quantum wells. The described lithography has already been successfully implemented and adapted in several published studies. All processes have been optimized to guarantee a minimum effect on the heterostructure’s properties and the sample surface, which is especially important for probing the topological surface states of strained HgTe bulk layers. Our developments therefore serve as a base for continuous progress to further establish HgTe as a topological insulator and give access to new experiments. / Topologische Isolatoren (TIs) beschreiben einen neuartigen Quanten-Aggregatszustand, der derzeit eines der meist beachteten Forschungsfelder in der Festkörperphysik darstellt. Verspannt gewachsene HgTe Schichten, sowie HgTe/HgCdTe Quantentrogstrukturen sind als eines der wenigen TI-Materialsysteme geeignet, um in Transportexperimenten untersucht zu werden. Darüber hinaus bieten HgTe Quantentröge hervorragende Voraussetzungen zur Durchführung von Spintronik-Experimenten. Eine grundlegende Voraussetzung für die meisten Versuche ist die zuverlässige Herstellung komplexer Nanostrukturen in diesen Schichtsystemen. Aufgrund der intrinsischen Temperaturgrenzen, der hohen Reaktivität mit verschiedensten Metallen und nicht zuletzt seiner Eigenschaften als topologischer Isolator, stellt Nanolithographie auf HgTe eine Herausforderung dar. Die vorliegende Arbeit zeigt auf, weshalb viele der in der Halbleitertechnik etablierten Lithographieprozesse nicht einfach auf HgTe übertragbar sind und bietet stattdessen alternative Lösungen. Die vorgestellten Entwicklungen befassen sich unter anderem mit der Herstellung ohmscher Kontakte, der Vermeidung metallischer Seitenwände und Ätzresiduen in Kombination mit Niedertemperatur-Lithographie (≤80 °C) und einem angepassten Hartmasken-Lithographieprozess. Zusätzlich demonstrieren wir hochauflösende Niederenergie-Elektronenstrahllithographie (2.5 kV) und die Strukturierung freitragender Gate-Elektroden. Die Realisierbarkeit von Nanostrukturen in HgTe Quantentrögen wurde anhand zweier unabhängiger Transportexperimente verifiziert. Wir präsentieren die erste Umsetzung physikalisch geätzter Quantenpunktkontakte in hochbeweglichen HgTe/HgCdTe 2DEGs und weisen deren Kontrollierbarkeit mittels externer Topgate-Elektroden nach. Bisher wurden experimentell noch keine Quantenpunktkontakte in TI-Materialien realisiert. Um deren Funktionalität zu bestätigen, wurden Messungen des Punktkontaktleitwerts als Funktion der externen Gate-Spannung durchgeführt. Die Messungen zeigen deutlich quantisierte Leitwertstufen in Abständen von 2e2/h, ein Charakteristikum von QPCs. Darüber hinaus wurden Untersuchungen zur Erzeugung und Kontrolle kollimierter Elektronenstrahlen durchgeführt, einer Schlüsselvoraussetzung zur Umsetzung spinoptischer Bauteile. Für die zweite Studie wurden mehrere der beschriebenen Lithographie- Techniken angewandt, um präzise Anordnungen aus Nanodrähten aus invertierten sowie nicht invertierten Quantentrögen zu erstellen. Mit diesen Proben wurde der Effekt der schwachen Antilokalisierung in Abhängigkeit von Magnetfeld und Temperatur untersucht. Unsere Messungen zeigen, dass die schwache Antilokalisierung in invertierten Proben um fast eine Größenordnung höher ist. Diese Beobachtung kann wiederum der Dirac-artigen Dispersion der Energiebänder in HgTe Quantentrögen zugeschrieben werden. Alle Lithographieprozesse wurden optimiert, um Einflüsse auf die Materialeigenschaften sowie die Probenoberfläche zu minimieren. Dies ist besonders für die Untersuchung der topologischen Oberflächenzustände verspannt gewachsener HgTe-Schichten relevant. Die vorgestellten Entwicklungen dienen dabei als Grundlage, um HgTe weiter als topologischen Isolator zu etablieren und gewähren Zugang zu neuen Experimenten. Die in dieser Arbeit beschriebene Lithographie fand bereits mehrfach Anwendung in verschiedenen veröffentlichten Studien.
17

Elektronische Struktur von Halbleiteroberflächen mit starker Spin-Bahn-Wechselwirkung: Topologie, Spinpolarisation und Robustheit / Electronic structure of semiconductor surfaces with strong spin-orbit interactions: topology, spin polarisation and robustness

Seibel, Christoph January 2016 (has links) (PDF)
Neue Erkenntnisse über elektronische Eigenschaften von Festkörpern legen den Grundstein für innovative Anwendungen der Zukunft. Von zentraler Bedeutung sind insbesondere die Eigenschaften der Elektronenspins. Um diese besser zu verstehen, befasst sich die vorliegende Arbeit mit der experimentellen Analyse der elektronischen Struktur von topologischen Isolatoren (Sb$_2$Te$_3$ , Bi$_2$Se$_x$Te$_{3−x}$, Bi$_{1.5}$Sb$_{0.5}$Te$_{1.8}$Se$_{1.2} und Bi$_{1.4}$Sb$_{1.1}$Te$_{2.2}$S$_{0.3}$) und Kristallen mit starker Spin-Bahn-Wechselwirkung (BiTeI) mittels Photoelektronenspektroskopie. Zu Beginn werden die zum Verständnis dieser Arbeit benötigten Grundlagen erklärt sowie die unterschiedlichen zum Einsatz kommenden Techniken eingeführt. Der Hauptteil der Arbeit teilt sich in drei Forschungsschwerpunkte. Der erste Teil befasst sich mit den elektronischen Eigenschaften der Valenzbandstruktur von Sb2Te3 und den auftretenden Oberflächenzuständen. Durch gezielte Variation der Energie der anregenden Strahlung wird der Charakter der Wellenfunktion des topologischen Oberflächenzustands und dessen Wechselwirkung mit Valenzzuständen erforscht. Dabei spielt die Topologie der Volumenbandstruktur eine grundlegende Rolle. Der zusätzliche Vergleich zu Photoemissionsrechnungen ermöglicht detaillierte Einblicke in die Wechselwirkung zwischen Oberflächen- und Volumenzuständen und gibt Aufschluss darüber, wie diese vermittelt werden. Im zweiten Abschnitt wird durch die Analyse des gemessenen Photoelektronenspins das Zusammenspiel der Spintextur des Grundzustands und Endzuständen in Bi2Te3 untersucht. Dabei treten, im Gegensatz zu Grundzustandsrechnungen, Radialkomponenten des Polarisationsvektors in nichtsymmetrischer Messgeometrie auf. Sowohl deren Energieabhängigkeit als auch deren Auftreten in Photoemissionsrechnungen (1-Schritt-Modell) deutet darauf hin, dass diese ihren Ursprung in Übergangsmatrixelementen des Photoemissionsprozesses haben. Dieses Ergebnis wird mit Spinpolarisationsmessungen am Oberflächenzustand des nicht-topologischen Schichtsystems BiTeI verglichen. Im dritten Teil werden Auswirkungen unterschiedlicher Manipulationen der untersuchten Materialien auf deren elektronische Eigenschaften beschrieben. Die Adsorption von Bruchteilen einer monoatomaren Lage des Alkalimetalls Caesium auf die Oberfläche des topologischen Isolators Sb2Te3 wird systematisch untersucht. Dadurch kann dessen intrinsische p-Dotierung teilweise abgebaut werden, wobei die Valenzbandstruktur trotz der Reaktivität des Adsorbats intakt bleibt. Des Weiteren werden Auswirkungen von Änderungen der Kristallstöchiometrie durch Volumendotierung vergleichend diskutiert. Ausblickend befasst sich das Kapitel mit dem Verhalten geringer Mengen ferromagnetischer Materialen (Fe, Ni) auf den Oberflächen der topologischen Isolatoren. Für die verschiedenen Adsorbate werden Trends aufgezeigt, die von Temperatur und Zusammensetzung des Substratkristalls abhängen. / New findings about electronic properties lay the foundation for future applications. The spin properties of systems with large spin-orbit coupling are particularly important. The content of this thesis therefore treats the experimental study of the surface electronic structure of topological insulators (Sb$_2$Te$_3$ , Bi$_2$Se$_x$Te$_{3−x}$, Bi$_{1.5}$Sb$_{0.5}$Te$_{1.8}$Se$_{1.2} and Bi$_{1.4}$Sb$_{1.1}$Te$_{2.2}$S$_{0.3}$) and topologically trivial BiTeI crystals using photoelectron spectroscopy. At the beginning basic knowledge to understand this thesis, as well as exploited techniques are addressed. The main part of this thesis separates into three research topics. The first part focuses on the electronic properties of the valence band structure and the wave functions of the occuring surface states. Via variation of the energy of the exciting radiation the character of the wavefunction of the respective topologically non trivial surface state as well as its interaction with valence states is explored. The bulk boundary correspondence and the topology of the bulk electronic structure is of special importance for this interaction. Additionally, it is concluded from photoemission calculations, that the interaction between surface and bulk valence states is mediated by a surface resonance state. The second section presents an analysis of photoelectron spins to investigate the respective contributions of the spin texture of the initial state and final states. This thesis reports on non-vanishing radial components of the polarization vector which do not appear in groundstate calculations. The energy dependance in combination with one-step photoemission calculations indicates that these radial components find their origin in transition matrix elements of the photoemission process. The result is compared to spin resolved measurements of the surface state of the layered material BiTeI which is not a topological insulator. In the third part the consequences of various manipulations of the analyzed materials on their respective electronic structure are described. The systematic adsorption of submonolayer amounts of the alkalimetal Caesium on the surface of the topological insulator Sb2Te3(0001) reduces its intrinsic p-doping without altering its valence band structure despite the reactivity of the adsorbate. Furthermore the effects of stoichiometric changes of elemental composition and bulk doping are being discussed. Finally the behavior of small amounts of ferromagnetic materials (Fe, Ni) on the surface of the respective topological insulators are being addressed. For the different adsorbates trends are shown, which depend on temperature and chemical composition of the substrate.
18

Transport properties of the three-dimensional topological insulator mercury telluride / Transporteigenschaften des dreidimensionalen topologischen Isolators Quecksilbertellurid

Schmitt, Fabian Bernhard January 2022 (has links) (PDF)
The subject of this thesis is the investigation of the transport properties of topological and massive surface states in the three-dimensional topological insulator Hg(Mn)Te. These surface states give rise to a variety of extraordinary transport phenomena, making this material system of great interest for research and technological applications. In this connection, many physical properties of the topological insulator Hg(Mn)Te still require in-depth exploration. The overall aim of this thesis is to analyze the quantum transport of HgTe-based devices ranging from hundreds of micrometers (macroscopic) down to a few micrometers in size (microscopic) in order to extend the overall understanding of surface states and the possibilities of their manipulation. In order to exploit the full potential of our high-quality heterostructures, it was necessary to revise and improve the existing lithographic fabrication process of macroscopic three-dimensional Hg(Mn)Te samples. A novel lithographic standard recipe for the fabrication of the HgTe-based macrostructures was developed. This recipe includes the use of an optimized Hall bar design and wet etching instead of etching with high-energy \(\mathrm{{Ar^{+}}}\)-ions, which can damage the samples. Further, a hafnium oxide insulator is applied replacing the SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\) dielectric in order to reduce thermal load. Moreover, the devices are metallized under an alternating angle to avoid discontinuities of the metal layers over the mesa edges. It was revealed that the application of gate-dielectric and top-gate metals results in n-type doping of the devices. This phenomenon could be attributed to quasi-free electrons tunneling from the trap states, which form at the interface cap layer/insulator, through the cap into the active layer. This finding led to the development of a new procedure to characterize wafer materials. It was found that the optimized lithographic processing steps do not unintentionally react chemically with our heterostructures, thus avoiding a degradation of the quality of the Hg(Mn)Te layer. The implementation of new contact structures Ti/Au, In/Ti/Au, and Al/Ti/Au did not result in any improvement compared to the standard structure AuGe/Au. However, a novel sample recipe could be developed, resulting in an intermixing of the contact metals (AuGe and Au) and fingering of metal into the mesa. The extent of the quality of the ohmic contacts obtained through this process has yet to be fully established. This thesis further deals with the lithographic realization of three-dimensional HgTe-based microstructures measuring only a few micrometer in size. Thus, these structures are in the order of the mean free path and the spin relaxation length of topological surface state electrons. A lithographic process was developed enabling the fabrication of nearly any desired microscopic device structure. In this context, two techniques suitable for etching microscopic samples were realized, namely wet etching and the newly established inductively coupled plasma etching. While wet etching was found to preserve the crystal quality of the active layer best, inductively coupled plasma etching is characterized by high reproducibility and excellent structural fidelity. Hence, the etching technique employed depends on the envisaged type of experiment. Magneto-transport measurements were carried out on the macroscopic HgTe-based devices fabricated by means of improved lithographic processing with respect to the transport properties of topological and massive surface states. It was revealed that due to the low charge carrier density present in the leads to the ohmic contacts, these regions can exhibit an insulating behavior at high magnetic fields and extremely low temperatures. As soon as the filling factor of the lowest Landau levels dropped below a critical value (\(\nu_{\mathrm{{c}}}\approx0.8\)), the conductance of the leads decreased significantly. It was demonstrated that the carrier density in the leads can be increased by the growth of modulation doping layers, a back-gate-electrode, light-emitting diode illumination, and by the application of an overlapping top-gate layout. This overlapping top-gate and a back-gate made it possible to manipulate the carrier density of the surface states on both sides of the Hg(Mn)Te layer independently. With this setup, it was identified that topological and massive surface states contribute to transport simultaneously in 3D Hg(Mn)Te. A model could be developed allowing the charge carrier systems populated in the sample to be determined unambiguously. Based on this model, the process of the re-entrant quantum Hall effect observed for the first time in three-dimensional topological insulators could be explained by an interplay of n-type topological and p-type massive surface states. A well-pronounced \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) sequence of quantum Hall plateaus was found in manganese-doped HgTe-based samples. It is postulated that this is the condensed-matter realization of the parity anomaly in three-dimensional topological insulators. The actual nature of this phenomenon can be the subject of further research. In addition, the measurements have shown that inter-scattering occurs between counter-propagating quantum Hall edge states. The good quantization of the Hall conductance despite this inter-scattering indicates that only the unpaired edge states determine the transport properties of the system as a whole. The underlying inter-scattering mechanism is the topic of a publication in preparation. Furthermore, three-dimensional HgTe-based microstructures shaped like the capital letter "H" were investigated regarding spin transport phenomena. The non-local voltage signals occurring in the measurements could be attributed to a current-induced spin polarization of the topological surface states due to electrons obeying spin-momentum locking. It was shown that the strength of this non-local signal is directly connected to the magnitude of the spin polarization and can be manipulated by the applied top-gate voltage. It was found that in these microstructures, the massive surface and bulk states, unlike the topological surface states, cannot contribute to this spin-associated phenomenon. On the contrary, it was demonstrated that the population of massive states results in a reduction of the spin polarization, either due to the possible inter-scattering of massive and topological surface states or due to the addition of an unpolarized electron background. The evidence of spin transport controllable by a top-gate-electrode makes the three-dimensional material system mercury telluride a promising candidate for further research in the field of spintronics. / Die vorliegende Dissertation beschäftigt sich mit der Untersuchung der Transporteigenschaften von topologischen und massiven Oberflächenzuständen in dem dreidimensionalen topologischen Isolator Hg(Mn)Te. Da diese Oberflächenzustände zu einer Vielzahl von außergewöhnlichen Transportphänomenen führen, ist dieses Materialsystem für die Grundlagenforschung und technologische Anwendungen von großem Interesse. Der Bereich der dreidimensionalen topologischen Isolatoren stellt ein relativ junges Forschungsgebiet dar. Daher bedürfen noch viele physikalische Eigenschaften des topologischen Isolators Hg(Mn)Te ein tiefergehendes Verständnis. Das übergeordnete Ziel dieser Arbeit ist die Analyse des Quantentransports von HgTe-basierten Proben, deren Abmessungen von mehreren hundert Mikrometern (makroskopisch) bis hin zu wenigen Mikrometern (mikroskopisch) reichen. Auf diese Weise soll das allgemeine Verständnis der Oberflächenzustände und die Möglichkeiten ihrer Manipulation erweitert werden. Um das volle Potential unserer hochqualitativen Heterostrukturen, welche durch Molekularstrahlepitaxie gewachsen werden, ausschöpfen zu können, musste das bestehende lithographische Herstellungsverfahren für makroskopische dreidimensionale Hg(Mn)Te-Proben überarbeitet und verbessert werden. Es konnte ein neuartiges lithographisches Standardrezept für die Herstellung von HgTe-basierten Makrostrukturen entwickelt werden. Dieses Rezept beinhaltet die Verwendung eines optimierten Probendesigns und verwendet nasschemisches Ätzen anstelle von Ätzen mit hochenergetischen \(\mathrm{{Ar^{+}}}\)-Ionen, welches die Proben beschädigen kann. Außerdem wird ein Isolator aus Hafniumoxid verwendet, der das SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\)-Dielektrikum ersetzt, um die thermische Belastung der Proben zu verringern. Darüber hinaus werden die Proben unter einem veränderlichen Winkel metallisiert, um Diskontinuitäten der Metallschichten entlang der Ränder der Mesa zu vermeiden. Es zeigte sich, dass das Aufbringen des Isolators und der Feldeffektelektrode zu einer Erhöhung der Elektronendichte in der Hg(Mn)Te-Schicht führt. Dieses Phänomen konnte darauf zurückgeführt werden, dass quasifreie Elektronen aus sogenannten Fallenzuständen, welche sich an der Grenzfläche zwischen der Cd\(_{0.7}\)Hg\(_{0.3}\)Te Deckschicht und dem Dielektrikum bilden, durch die Deckschicht in die aktive Schicht tunneln können. Dieser neue Einblick führte zu der Entwicklung einer neuen Prozedur zur Charakterisierung von Wafermaterialien. Es stellte sich heraus, dass die optimierten lithographischen Prozessschritte nicht unbeabsichtigt mit unseren Heterostrukturen chemisch reagieren, was eine Verringerung der Qualität der Hg(Mn)Te-Schicht verhindert. Die Implementierung der neuen Kontaktstrukturen Ti/Au, In/Ti/Au und Al/Ti/Au führte zu keiner Verbesserung im Vergleich zur Standardstruktur AuGe/Au. Es konnte jedoch ein neuartiges Probenrezept entwickelt werden, dessen Anwendung zu einer Vermischung der Kontaktmetalle (AuGe und Au) und zu einem Eindiffundieren von Metall in die Mesa führt. Das Ausmaß der Qualität der ohmschen Kontakte, welche durch dieses Verfahren erhalten werden, muss noch vollständig ermittelt werden. Zudem befasst sich diese Dissertation mit der lithographischen Realisierung dreidimensionaler HgTe-basierter Mikrostrukturen, die nur wenige Mikrometer groß sind. Somit liegen diese Strukturen in der Größenordnung der mittleren freien Weglänge und der Spinrelaxationslänge von Elektronen, welche sich in den topologischen Oberflächenzuständen befinden. Es wurde ein lithographischer Prozess entwickelt, der die Herstellung nahezu jeder gewünschten mikroskopischen Struktur ermöglicht. In diesem Zusammenhang wurden zwei für das Ätzen mikroskopischer Proben geeignete Techniken vorgestellt, nämlich nasschemisches Ätzen mit einer flüssigen KI:I\(_{2}\):HBr Lösung und das Ätzen unter Verwendung eines induktiv gekoppelten Methan-Plasmas. Während nasschemisches Ätzen die Kristallqualität der Hg(Mn)Te-Schicht am besten erhält, zeichnet sich das Plasmaätzen durch eine hohe Reproduzierbarkeit und ausgezeichnete Strukturtreue aus. Die Wahl der zu bevorzugenden Ätztechnik hängt daher von der Art des geplanten Experiments ab. An den makroskopischen Bauelementen auf HgTe-Basis, welche durch Anwendung der verbesserten lithographischen Prozessierung hergestellt wurden, wurden magnetfeldabhängige Transportmessungen hinsichtlich der Transporteigenschaften von topologischen und massiven Oberflächenzuständen durchgeführt. Es zeigte sich, dass die Zuleitungen zu den ohmschen Kontakten bei hohen Magnetfeldern (\(B>4\,\mathrm{{T}}\)) und extrem tiefen Temperaturen (\(T\ll1\,\mathrm{K}\)) ein isolierendes Verhalten aufweisen können. Eine geringe Ladungsträgerdichte in diesen Bereichen wurde als Ursache identifiziert. Sobald der Füllfaktor der untersten Landau-Niveaus unter einen kritischen Wert fiel, nahm die Leitfähigkeit der Zuleitungen deutlich ab. Es wurde festgestellt, dass der Betrag dieses kritischen Füllfaktors für alle untersuchten Proben ungefähr 0,8 beträgt und unabhängig davon ist, ob die untersten Landau-Niveaus elektronen- oder lochartig sind. Darüber hinaus konnte gezeigt werden, dass die Ladungsträgerdichte in den Zuleitungen durch das Wachstum von Modulationsdotierschichten, eine unterhalb des Bauelements angeordnete Feldeffektelektrode, die Bestrahlung mit einer Leuchtdiode und das Aufbringen einer mit den ohmschen Kontakten überlappenden Feldeffektelektrode erhöht werden kann. Diese beiden Feldeffektelektroden, welche sich unter- und oberhalb der Heterostruktur befinden, ermöglichten es die Ladungsträgerdichte der Oberflächenzustände auf beiden Seiten der Hg(Mn)Te-Schicht unabhängig voneinander zu manipulieren. Mit diesem Aufbau wurde festgestellt, dass topologische und massive Oberflächenzustände gleichzeitig zum Transport in 3D Hg(Mn)Te beitragen. Es konnte ein Modell entwickelt werden, welches die eindeutige Bestimmung der in der Probe besetzten Ladungsträgersysteme ermöglicht. Auf der Grundlage dieses Modells konnte ein magnetfeldabhängiger Prozess, welcher sich durch wiedereinkehrende Plateaus im Rahmen des Quanten-Hall-Effekts auszeichnet, erklärt werden. Dieser erstmals in dreidimensionalen topologischen Isolatoren beobachtete Prozess ist das Resultat des Zusammenspiels von zwei elektronenartigen topologischen Oberflächenzuständen und einem lochartigen massiven Oberflächenzustand. Eine besonders deutlich ausgeprägte \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) Abfolge von Plateaus konnte in mit Mangan dotierten dreidimensionalen HgTe-basierten topologischen Isolatoren gefunden werden. Es wird postuliert, dass es sich dabei um die Realisierung der Paritätsanomalie in kondensierter Materie handelt. Die tatsächliche Natur dieses Phänomens kann Gegenstand weiterer Forschung sein. Darüber hinaus haben die Messungen gezeigt, dass entgegengesetzt verlaufende elektronen- und lochartige Randzustände miteinander streuen. Die gute Quantisierung der Hall-Leitfähigkeit, welche ungeachtet dieser Streuung beobachtet werden kann, deutet darauf hin, dass nur die ungepaarten Randzustände die Transporteigenschaften des Gesamtsystems bestimmen. Der zugrundeliegende Streumechanismus ist das Thema einer Publikation, welche sich in der Vorbereitung befindet. Des Weiteren wurden dreidimensionale HgTe-basierte Mikrostrukturen, die wie der Großbuchstabe “H” geformt sind, hinsichtlich Spintransportphänomene untersucht. Die bei den Messungen auftretenden nichtlokalen Spannungssignale konnten auf eine strominduzierte Spinpolarisation der topologischen Oberflächenzustände zurückgeführt werden. Ursache für diese strominduzierte Spinpolarisation ist die starke Kopplung des Elektronenspins an den Elektronenimpuls. Es wurde gezeigt, dass die Intensität dieses nichtlokalen Signals direkt mit der Stärke der Spinpolarisation zusammenhängt und durch eine Feldeffektelektrode manipuliert werden kann. Es wurde festgestellt, dass in diesen Mikrostrukturen die massiven Oberflächen- und Bulkzustände, im Gegensatz zu den topologischen Oberflächenzuständen, nicht zu diesem mit dem Spin assoziierten Phänomen beitragen können. Es wurde im Gegenteil gezeigt, dass eine Besetzung der massiven Zustände zu einer Verringerung der Spinpolarisation führt. Die verantwortlichen Mechanismen sind das Streuen von massiven und topologischen Oberflächenzuständen und das Hinzufügung eines großen Hintergrunds an unpolarisierten Elektronen. Der Nachweis des durch eine Feldeffektelektrode kontrollierbaren Spintransports macht das dreidimensionale Materialsystem Quecksilbertellurid zu einem vielversprechenden Kandidaten für weitere Forschungen auf dem Gebiet der Spintronik.
19

Molecular Beam Epitaxy and Characterization of the Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\) / Molekularstrahlepitaxie und Charakterisierung des magnetischen topologischen Isolators (V,Bi,Sb)\(_2\)Te\(_3\)

Winnerlein, Martin January 2020 (has links) (PDF)
The subject of this thesis is the fabrication and characterization of magnetic topological insulator layers of (V,Bi,Sb)\(_2\)Te\(_3\) exhibiting the quantum anomalous Hall effect. A major task was the experimental realization of the quantum anomalous Hall effect, which is only observed in layers with very specific structural, electronic and magnetic properties. These properties and their influence on the quantum anomalous Hall effect are analyzed in detail. First, the optimal conditions for the growth of pure Bi\(_2\)Te\(_3\) and Sb\(_2\)Te\(_3\) crystal layers and the resulting structural quality are studied. The crystalline quality of Bi\(_2\)Te\(_3\) improves significantly at higher growth temperatures resulting in a small mosaicity-tilt and reduced twinning defects. The optimal growth temperature is determined as 260\(^{\circ}\)C, low enough to avoid desorption while maintaining a high crystalline quality. The crystalline quality of Sb\(_2\)Te\(_3\) is less dependent on the growth temperature. Temperatures below 230\(^{\circ}\)C are necessary to avoid significant material desorption, though. Especially for the nucleation on Si(111)-H, a low sticking coefficient is observed preventing the coalescence of islands into a homogeneous layer. The influence of the substrate type, miscut and annealing sequence on the growth of Bi\(_2\)Te\(_3\) layers is investigated. The alignment of the layer changes depending on the miscut angle and annealing sequence: Typically, layer planes align parallel to the Si(111) planes. This can enhance the twin suppression due to transfer of the stacking order from the substrate to the layer at step edges, but results in a step bunched layer morphology. For specific substrate preparations, however, the layer planes are observed to align parallel to the surface plane. This alignment avoids displacement at the step edges, which would cause anti-phase domains. This results in narrow Bragg peaks in XRD rocking curve scans due to long-range order in the absence of anti-phase domains. Furthermore, the use of rough Fe:InP(111):B substrates leads to a strong reduction of twinning defects and a significantly reduced mosaicity-twist due to the smaller lattice mismatch. Next, the magnetically doped mixed compound V\(_z\)(Bi\(_{1−x}\)Sb\(_x\))\(_{2−z}\)Te\(_3\) is studied in order to realize the quantum anomalous Hall effect. The addition of V and Bi to Sb\(_2\)Te\(_3\) leads to efficient nucleation on the Si(111)-H surface and a closed, homogeneous layer. Magneto-transport measurements of layers reveal a finite anomalous Hall resistivity significantly below the von Klitzing constant. The observation of the quantum anomalous Hall effect requires the complete suppression of parasitic bulklike conduction due to defect induced carriers. This can be achieved by optimizing the thickness, composition and growth conditions of the layers. The growth temperature is observed to strongly influence the structural quality. Elevated temperatures result in bigger islands, improved crystallographic orientation and reduced twinning. On the other hand, desorption of primarily Sb is observed, affecting the thickness, composition and reproducibility of the layers. At 190\(^{\circ}\)C, desorption is avoided enabling precise control of layer thickness and composition of the quaternary compound while maintaining a high structural quality. It is especially important to optimize the Bi/Sb ratio in the (V,Bi,Sb)\(_2\)Te\(_3\) layers, since by alloying n-type Bi\(_2\)Te\(_3\) and p-type Sb\(_2\)Te\(_3\) charge neutrality is achieved at a specific mixing ratio. This is necessary to shift the Fermi level into the magnetic exchange gap and fully suppress the bulk conduction. The Sb content x furthermore influences the in-plane lattice constant a significantly. This is utilized to accurately determine x even for thin films below 10 nm thickness required for the quantum anomalous Hall effect. Furthermore, x strongly influences the surface morphology: with increasing x the island size decreases and the RMS roughness increases by up to a factor of 4 between x = 0 and x = 1. A series of samples with x varied between 0.56-0.95 is grown, while carefully maintaining a constant thickness of 9 nm and a doping concentration of 2 at.% V. Magneto-transport measurements reveal the charge neutral point around x = 0.86 at 4.2 K. The maximum of the anomalous Hall resistivity of 0.44 h/e\(^2\) is observed at x = 0.77 close to charge neutrality. Reducing the measurement temperature to 50 mK significantly increases the anomalous Hall resistivity. Several samples in a narrow range of x between 0.76-0.79 show the quantum anomalous Hall effect with the Hall resistivity reaching the von Klitzing constant and a vanishing longitudinal resistivity. Having realized the quantum anomalous Hall effect as the first group in Europe, this breakthrough enabled us to study the electronic and magnetic properties of the samples in close collaborations with other groups. In collaboration with the Physikalisch-Technische Bundesanstalt high-precision measurements were conducted with detailed error analysis yielding a relative de- viation from the von Klitzing constant of (0.17 \(\pm\) 0.25) * 10\(^{−6}\). This is published as the smallest, most precise value at that time, proving the high quality of the provided samples. This result paves the way for the application of magnetic topological insulators as zero-field resistance standards. Non-local magneto-transport measurements were conducted at 15 mK in close collaboration with the transport group in EP3. The results prove that transport happens through chiral edge channels. The detailed analysis of small anomalies in transport measurements reveals instabilities in the magnetic phase even at 15 mK. Their time dependent nature indicates the presence of superparamagnetic contributions in the nominally ferromagnetic phase. Next, the influence of the capping layer and the substrate type on structural properties and the impact on the quantum anomalous Hall effect is investigated. To this end, a layer was grown on a semi-insulating Fe:InP(111)B substrate using the previously optimized growth conditions. The crystalline quality is improved significantly with the mosaicity twist reduced from 5.4\(^{\circ}\) to 1.0\(^{\circ}\). Furthermore, a layer without protective capping layer was grown on Si and studied after providing sufficient time for degradation. The uncapped layer on Si shows perfect quantization, while the layer on InP deviates by about 5%. This may be caused by the higher crystalline quality, but variations in e.g. Sb content cannot be ruled out as the cause. Overall, the quantum anomalous Hall effect seems robust against changes in substrate and capping layer with only little deviations. Furthermore, the dependence of the quantum anomalous Hall effect on the thickness of the layers is investigated. Between 5-8 nm thickness the material typically transitions from a 2D topological insulator with hybridized top and bottom surface states to a 3D topological insulator. A set of samples with 6 nm, 8 nm, and 9 nm thickness exhibits the quantum anomalous Hall effect, while 5 nm and 15 nm thick layers show significant bulk contributions. The analysis of the longitudinal and Hall conductivity during the reversal of magnetization reveals distinct differences between different thicknesses. The 6 nm thick layer shows scaling consistent with the integer quantum Hall effect, while the 9 nm thick layer shows scaling expected for the topological surface states of a 3D topological insulator. The unique scaling of the 9 nm thick layer is of particular interest as it may be a result of axion electrodynamics in a 3D topological insulator. Subsequently, the influence of V doping on the structural and magnetic properties of the host material is studied systematically. Similarly to Bi alloying, increased V doping seems to flatten the layer surface significantly. With increasing V content, Te bonding partners are observed to increase simultaneously in a 2:3 ratio as expected for V incorporation on group-V sites. The linear contraction of the in-plane and out-of-plane lattice constants with increasing V doping is quantitatively consistent with the incorporation of V\(^{3+}\) ions, possibly mixed with V\(^{4+}\) ions, at the group-V sites. This is consistent with SQUID measurements showing a magnetization of 1.3 \(\mu_B\) per V ion. Finally, magnetically doped topological insulator heterostructures are fabricated and studied in magneto-transport. Trilayer heterostructures with a non-magnetic (Bi,Sb)\(_2\)Te\(_3\) layer sandwiched between two magnetically doped layers are predicted to host the axion insulator state if the two magnetic layers are decoupled and in antiparallel configuration. Magneto-transport measurements of such a trilayer heterostructure with 7 nm undoped (Bi,Sb)\(_2\)Te\(_3\) between 2 nm thick layers doped with 1.5 at.% V exhibit a zero Hall plateau representing an insulating state. Similar results in the literature were interpreted as axion insulator state, but in the absence of a measurement showing the antiparallel magnetic orientation other explanations for the insulating state cannot be ruled out. Furthermore, heterostructures including a 2 nm thin, highly V doped layer region show an anomalous Hall effect of opposite sign compared to previous samples. A dependency on the thickness and position of the doped layer region is observed, which indicates that scattering at the interfaces causes contributions to the anomalous Hall effect of opposite sign compared to bulk scattering effects. Many interesting phenomena in quantum anomalous Hall insulators as well as axion insulators are still not unambiguously observed. This includes Majorana bound states in quantum anomalous Hall insulator/superconductor hybrid systems and the topological magneto-electric effect in axion insulators. The limited observation temperature of the quantum anomalous Hall effect of below 1 K could be increased in 3D topological insulator/magnetic insulator heterostructures which utilize the magnetic proximity effect. The main achievement of this thesis is the reproducible growth and characterization of (V,Bi,Sb)2Te3 layers exhibiting the quantum anomalous Hall effect. The detailed study of the structural requirements of the quantum anomalous Hall effect and the observation of the unique axionic scaling behavior in 3D magnetic topological insulator layers leads to a better understanding of the nature of this new quantum state. The high-precision measurements of the quantum anomalous Hall effect reporting the smallest deviation from the von Klitzing constant are an important step towards the realization of a zero-field quantum resistance standard. / Das Thema dieser Arbeit ist die Herstellung und Charakterisierung von Schichten des magnetischen topologischen Isolators (V,Bi,Sb)\(_2\)Te\(_3\), die den Quanten anomalen Hall-Effekt zeigen. Die Hauptaufgabe war die experimentelle Realisierung des Quanten anomalen Hall-Effekts, welcher nur in Schichten mit bestimmten strukturellen, elektronischen und magnetischen Eigenschaften beobachtet wird. Diese Eigenschaften wurden ermittelt und ihr Einfluss genau analysiert. Als Erstes wurden die optimalen Bedingungen für das Wachstum von reinen Bi\(_2\)Te\(_3\) und Sb\(_2\)Te\(_3\) Kristallschichten und die resultierende strukturelle Qualität untersucht. Die kristalline Qualität von Bi\(_2\)Te\(_3\) verbessert sich signifikant bei hohen Wachstumstemperaturen, welche die Neigung der Domänen verringern und Zwillingsdefekte reduzieren. Als optimale Wachstumstemperatur wurde 260\(^{\circ}\)C ermittelt, ausreichend niedrig um Desorption zu vermeiden während eine hohe Kristallqualität erhalten bleibt. Die Wachstumstemperatur von Sb\(_2\)Te\(_3\) hat einen geringeren Einfluss auf die Kristallqualität. Temperaturen unter 230\(^{\circ}\)C sind allerdings nötig um erhebliche Desorption zu vermeiden. Ein geringer Haftkoeffizient wurde besonders bei der Nukleation auf der Si(111)-H Oberfläche beobachtet und verhindert das Zusammenwachsen von Inseln zu einer homogenen Schicht. Der Einfluss des Substrattyps, der Fehlorientierung der Oberfläche und der Ausheizsequenz auf das Wachstum von Bi\(_2\)Te\(_3\) Schichten wurde untersucht. Die Ausrichtung der Schicht ändert sich je nach Winkel der Fehlorientierung und der Ausheilsequenz: Typischerweise orientieren sich die Ebenen der Schicht parallel zu den Si(111) Ebenen, was aufgrund des Transfers der Stapelfolge vom Substrat zur Schicht an den Stufenkanten die Unterdrückung von Zwillingsdefekte verbessert. Andererseits führt diese Orientierung zu Anti-Phasen-Domänen durch die Verschiebung an den Stufenkanten und zu einer gestuften Oberflächenmorphologie. Für bestimmte Substratpräparationen richtet sich die Schicht jedoch parallel zur Oberfläche aus. Diese Orientierung verhindert Verschiebungen an Stufenkanten und damit Anti-Phasen-Domänen. Dies führt aufgrund der langreichweitigen Ordnung zu sehr schmalen Bragg-Reflexen in XRD rocking curve Diffraktogrammen. Weiterhin führen raue Fe:InP(111):B Substrate zu einer starken Unterdrückung von Zwillingsdefekten und aufgrund der besseren Gitteranpassung zu einer deutlich verringerten Verdrehung der Domänen. Als Nächstes wurde das magnetisch dotierte V\(_z\)(Bi\(_{1−x}\)Sb\(_x\))\(_{2−z}\)Te\(_3\) untersucht mit dem Ziel den Quanten anomalen Hall-Effekt zu realisieren. Die Zugabe von V und Bi zu Sb\(_2\)Te\(_3\) führt zu einer effizienten Nukleation auf der Si(111)-H Oberfläche und einer geschlossenen, homogenen Schicht. Magnetotransport Messungen der Schichten ergeben einen messbaren anomalen Hall-Widerstand deutlich unter der von-Klitzing-Konstanten. Die Beobachtung des Quanten anomalen Hall-Effekts setzt eine vollständige Unterdrückung der defekt-induzierten, parasitären Leitfähigkeit im Inneren der Schicht voraus. Dies kann durch die Optimierung der Dicke, Zusammensetzung und Wachstumsbedingungen der Schicht erreicht werden. Beobachtungen zeigen, dass die Wachstumstemperatur die strukturelle Qualität stark beeinflusst. Erhöhte Temperaturen erzielen größere Inseln, eine verbesserte kristalline Orientierung und weniger Zwillingsdefekte. Andererseits wird Desorption von überwiegend Sb beobachtet, was sich auf die Dicke, Zusammensetzung und Reproduzierbarkeit der Schichten auswirkt. Bei 190\(^{\circ}\)C kann Desorption vermieden werden, was eine präzise Kontrolle über Schichtdicke und Zusammensetzung des quaternären Verbunds ermöglicht, während eine hohe strukturelle Qualität erhalten bleibt. Es ist besonders wichtig das Bi/Sb Verhältnis zu optimieren, da durch das Legieren des n-Typ Bi\(_2\)Te\(_3\) mit dem p-Typ Sb\(_2\)Te\(_3\) bei einem bestimmten Verhältnis Ladungsneutralität erzielt wird. Dies ist nötig um die Leitung im Inneren der Schicht vollständig zu unterdrücken und die Fermikante in die magnetische Austauschlücke zu schieben. Der Sb Gehalt x beeinflusst außerdem die Gitterkonstante a in der Ebene deutlich, im Gegensatz zur Gitterkonstante c in Wachstumsrichtung. Mit Hilfe dieses Zusammenhangs kann x selbst in dünnen Schichten unter 10 nm Dicke, wie sie für den Quantum anomalen Hall-Effekt benötigt werden, genau bestimmt werden. Der Sb Gehalt x beeinflusst weiterhin die Oberflächenmorphologie deutlich: mit steigenden x verringert sich die Inselgröße und die RMS Rauigkeit wächst um bis zu einem Faktor 4 zwischen x = 0 und x = 1. Eine Probenserie mit x zwischen 0,56−0,95 wurde hergestellt, wobei darauf geachtet wurde eine konstante Dicke von 9 nm und eine Dotierkonzentration von 2 at.% V beizubehalten. Magnetotransport Messungen bei 4,2K zeigen Ladungsneutra- lität bei x = 0,86. Der maximale anomale Hall-Widerstand von 0,44 h/e\(^2\) wird bei x = 0,77 nahe der Ladungsneutralität beobachtet. Wird die Messtemperatur auf 50 mK reduziert, steigt der anomale Hall-Widerstand signifikant an. Mehrere Proben mit x in einem schmalen Bereich von 0,76−0,79 zeigen den Quanten anomalen Hall-Effekt mit einem Hall-Widerstand, der die von-Klitzing-Konstante erreicht, und verschwindendem longitudinalen Widerstand. Die Realisierung des Quantum anomalen Hall-Effekts als erste Gruppe in Europa ermöglichte es uns die elektrischen und magnetischen Eigenschaften der Proben in Zusammenarbeit mit anderen Gruppen zu untersuchen. In Kollaboration mit der Physikalisch-Technische Bundesanstalt wurden Hochpräzisionsmessungen mit detaillierter Fehleranalyse durchgeführt und eine relative Abweichung von der von-Klitzing-Konstante von (0,17\(\pm\)0,25)*10\(^{−6}\) erzielt. Dieser Wert wurde als kleinster und genauester Wert publiziert, was die hohe Qualität der zur Verfügung gestellten Proben zeigt. Dieses Ergebnis ebnet den Weg für die Anwendung von magnetischen topologischen Isolatoren als Widerstand Standards ohne Magnetfeld. In enger Zusammenarbeit mit der Transport Gruppe in der EP3 wurden nichtlokale Magnetotransport Messungen bei 15mK durchgeführt. Das Ergebnis beweist, dass Transport durch chirale Randkanäle erfolgt. Die detaillierte Analyse kleiner Anomalien in Transport Messungen offenbart Instabilitäten in der magnetischen Phase selbst bei 15 mK. Der zeitabhängige Charakter dieser Anomalien weist auf superparamagnetische Anteile in der nominell ferromagnetischen Phase hin. Als nächstes wurde der Einfluss der Deckschicht und des Substrattyps auf die strukturellen Eigenschaften und die Auswirkungen auf den Quanten anomalen Hall-Effekt untersucht. Dazu wurde eine Schicht auf halbisolierendem Fe:InP(111)B Substrat unter den zuvor optimierten Wachstumsbedingungen gewachsen. Dies führt zu einer deutlich erhöhten kristallinen Qualität mit einem verringerten Verdrehungswinkel von 5,4\(^{\circ}\) auf 1,0\(^{\circ}\). Weiterhin wurde eine Schicht ohne schützende Deckschicht auf Si gewachsen und, nachdem ausreichend Zeit für mögliche Degradation vergangen war, gemessen. Die Schicht auf Si ohne Deckschicht zeigt perfekte Quantisierung, während die Schicht auf InP eine Abweichung von etwa 5% aufweist. Ursache könnte die höhere kristalline Qualität sein, Variationen in z.B. Sb Gehalt könnten jedoch auch eine Rolle spielen. Insgesamt scheint der Quanten anomale Hall-Effekt robust gegenüber Änderungen des Substrats und der Deckschicht zu sein. Des Weiteren wurde die Abhängigkeit des Quanten anomalen Hall-Effekts von der Schichtdicke untersucht. Zwischen 5−8 nm Dicke wechselt das Material typischerweise von einem 2D topologischen Isolator mit hybridisierten oberen und unteren Oberflächenzustand zu einem 3D topologischen Isolator. Eine Probenreihe mit 6 nm, 8 nm und 9 nm Schichtdicke zeigt den Quanten anomalen Hall- Effekt, während 5 nm und 15 nm dicke Schichten deutliche Beiträge aus dem Volumen haben. Die Analyse der longitudinalen- und Hall-Leitfähigkeit während der Umkehrung der Magnetisierung offenbart eindeutige Unterschiede. Die 6 nm dicke Schicht zeigt ein Skalierungsverhalten konsistent mit dem ganzzahligen Quanten- Hall-Effekt, die 9 nm dicke Schicht dagegen zeigt das erwartete Skalierungsverhalten für die topologischen Oberflächenzustände eines 3D topologischen Isolators. Das besondere Skalierungsverhalten der 9 nm dicken Schicht ist von besonderem Interesse, da es der axionischen Elektrodynamik in einem 3D topologischen Isolator entspringen könnte. Anschließend wird der Einfluss von V Dotierung auf die strukturellen und magnetischen Eigenschaften der Schichten systematisch untersucht. Ähnlich wie das Legieren mit Bi, scheint V Dotieren die Oberfläche deutlich zu glätten. Mit steigenden V Gehalt erhöht sich die Zahl der Te Bindungspartner simultan im 2:3 Verhältnis, wie erwartet für den Einbau von V auf Gruppe-V Plätzen. Die lineare Kontraktion der Gitterkonstanten in der Ebene und senkrecht dazu mit steigender V Dotierung ist quantitativ konsistent mit dem Einbau von V\(^{3+}\) Ionen, möglicherweise gemischt mit V\(^{4+}\) Ionen, auf Gruppe-V Plätzen. Dies ist konsistent mit SQUID Messungen die eine Magnetisierung von 1,3 \(\mu_B\) pro V Ion zeigen. Schließlich werden magnetisch dotierte topologische Isolator Heterostrukturen hergestellt und in Magnetotransport Messungen charakterisiert. Der Axion-Isolator Zustand wurde in dreischichtigen Heterostrukturen mit einer nichtmagnetischen (Bi,Sb)\(_2\)Te\(_3\) Lage zwischen zwei magnetischen Schichten vorhergesagt, falls die beiden magnetischen Lagen entkoppelt sind und in antiparalleler Ausrichtung vorliegen. Magnetotransport Messungen solcher dreischichtigen Heterostrukturen mit 7 nm undotiertem (Bi,Sb)\(_2\)Te\(_3\) zwischen jeweils 2 nm dicken dotierten Schichten mit 1,5 at.% V zeigen ein Null Hall-Plateau, das einen isolierenden Zustand repräsentiert. Ähnliche Ergebnisse in der Literatur wurden als Axion-Isolator Zustand interpretiert, jedoch können andere Erklärungen ohne eine direkten Messung der antiparallelen magnetischen Orientierung nicht ausgeschlossen werden. Weiterhin zeigen Heterostrukturen mit einer 2 nm dünnen, hoch V dotierten Schicht einen anomalen Hall-Effekt mit entgegengesetzten Vorzeichen im Vergleich zu vorhergehenden Proben. Die Abhängigkeit von der Dicke und Position dieser Schicht könnte darauf hindeuten, dass Streuprozesse an den Grenzflächen einen Beitrag zum anomalen Hall-Effekt entgegengesetzt zu den Volumenstreuprozessen verursachen. Viele interessante Phänomene in Quanten anomalen Hall Isolatoren sowie Axion- Isolatoren sind noch nicht eindeutig beobachtet worden. Dies schließt gebundene Majorana-Zustände in Quanten anomalen Hall Isolator/Supraleiter Hybridsystemen und den topologischen magneto-elektrischen Effekt in Axion-Isolatoren ein. Die limitierte Beobachtungstemperatur des Quanten anomalen Hall-Effekts von unter 1 K könnte in Heterostrukturen aus 3D topologischen Isolator und magnetischen Isolator Schichten welche den magnetischen Proximity-Effekt nutzen erhöht werden. Das wichtigste Ergebnis dieser Arbeit ist das reproduzierbare Wachstum und die Charakterisierung von (V,Bi,Sb)\(_2\)Te\(_3\) Schichten die den Quanten anomalen Hall-Effekt zeigen. Die detaillierte Untersuchung der strukturellen Voraussetzungen und die Beobachtung des besonderen axionischen Skalierungsverhaltens in 3D magnetischen Isolatorschichten führt zu einem besseren Verständnis dieses neuen Quantenzustands. Die Hochpräzisionsmessungen des Quanten anomalen Hall-Effekts mit der geringsten Abweichung von der von-Klitzing-Konstanten sind ein wichtiger Schritt zur Realisierung eines Widerstand-Standards basierend auf Quantisierung ohne magnetischem Feld.
20

Strain-engineering of the Topological Insulator HgTe / Kontrolle der Verspannung im topologischen Isolator HgTe

Leubner, Philipp January 2017 (has links) (PDF)
The subject of this thesis is the control of strain in HgTe thin-film crystals. Such systems are members of the new class of topological insulator materials and therefore of special research interest. A major task was the experimental control of the strain in the HgTe films. This was achieved by a new epitaxial approach and confirmed by cristallographic analysis and magneto-transport measurements. In this work, strain was induced in thin films by means of coherent epitaxy on substrate crystals. This means that the film adopts the lattice constant of the substrate in the plane of the substrate-epilayer interface. The level of strain is determined by the difference between the strain-free lattice constants of the substrate and epilayer material (the so-called lattice mismatch). The film responds to an in-plane strain with a change of its lattice constant perpendicular to the interface. This relationship is crucial for both the correct interpretation of high resolution X-ray diffraction (HRXRD) measurements, and the precise determination of the band dispersion. The lattice constant of HgTe is smaller than the lattice constant of CdTe. Therefore, strain in HgTe is tensile if it is grown on a CdTe substrate. In principle, compressive strain can be achieved by using an appropriate \(\text{Cd}_{1-x}\text{Zn}_{x}\text{Te}\) substrate. This concept was modified and applied in this work. Epilayers have been fabricated by molecular-beam epitaxy (MBE). The growth of thick buffer layers of CdTe on GaAs:Si was established as an alternative to commercial CdTe and \(text{Cd}_{0.96}\text{Zn}_{0.04}\text{Te}\) substrates. The growth conditions have been optimized by an analysis of atomic force microscopy and HRXRD studies. HRXRD measurements reveal a power-law increase of the crystal quality with increasing thickness. Residual strain was found in the buffer layers, and was attributed to a combination of finite layer thickness and mismatch of the thermal expansion coefficients of CdTe and GaAs. In order to control the strain in HgTe epilayers, we have developed a new type of substrate with freely adjustable lattice constant. CdTe-\(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\) strained-layer-superlattices have been grown by a combination of MBE and atomic-layer epitaxy (ALE), and have been analyzed by HRXRD. ALE of the \(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\) layer is self-limiting to one monolayer, and the effective lattice constant can be controlled reproducibly and straightforward by adjusting the CdTe layer thickness. The crystal quality has been found to degrade with increasing Zn-fraction. However, the effect is less drastic compared to single layer \(\text{Cd}_{1-x}\text{Zn}_{x}\text{Te}\) solid solutions. HgTe quantum wells (QWs) sandwiched in between CdHgTe barriers have been fabricated in a similar fashion on superlattices and conventional CdTe and \(\text{Cd}_{0.96}\text{Zn}_{0.04}\text{Te}\) substrates. The lower critical thickness of the CdHgTe barrier material grown on superlattice substrates had to be considered regarding the sample design. The electronic properties of the QWs depend on the strain and thickness of the QW. We have determined the QW thickness with an accuracy of \(\pm\)0.5 nm by an analysis of the beating patterns in the thickness fringes of HRXRD measurements and X-ray reflectometry measurements. We have, for the first time, induced compressive strain in HgTe QWs by an epitaxial technique (i.e. the effective lattice constant of the superlattice is lower compared to the lattice constant of HgTe). The problem of the lattice mismatch between superlattice and barriers has been circumvented by using CdHgTe-ZnHgTe superlattices instead of CdHgTe as a barrier material. Furthermore, the growth of compressively strained HgTe bulk layers (with a thickness of at least 50 nm) was demonstrated as well. The control of the state of strain adds a new degree of freedom to the design of HgTe epilayers, which has a major influence on the band structure of QWs and bulk layers. Strain in bulk layers lifts the degeneracy of the \(\Gamma_8\) bands at \(\mathbf{k}=0\). Tensile strain opens an energy gap, compressive strain shifts the touching points of the valence- and conduction band to positions in the Brillouin zone with finite \(\mathbf{k}\). Such a situation has been realized for the first time in the course of this work. For QWs in the inverted regime, it is demonstrated that compressive strain can be used to significantly enhance the thermal energy gap of the two-dimensional electron gas (2DEG). In addition, semi-metallic and semiconducting behavior is expected in wide QWs, depending on the state of strain. An examination of the temperature dependence of the subband ordering in QWs revealed that the band gap is only temperature-stable for appropriate sample parameters and temperature regimes. The band inversion is always lifted for sufficiently high temperatures. A large number of models investigate the influence of the band gap on the stability of the quantum-spin-Hall (QSH) effect. An enhancement of the stability of QSH edge state conductance is expected for enlarged band gaps. Furthermore, experimental studies on the temperature dependence of the QSH conductance are in contradiction to theoretical predictions. Systematic studies of these aspects have become feasible based on the new flexibility of the sample design. Detailed low-temperature magnetotransport studies have been carried out on QWs and bulk layers. For this purpose, devices have been fabricated lithographically, which consist of two Hall-bar geometries with different dimensions. This allows to discriminate between conductance at the plane of the 2DEG and the edge of the sample. The Fermi energy in the 2DEG has been adjusted by means of a top gate electrode. The strain-induced transition from semi-metallic to semiconducting characteristics in wide QWs was shown. The magnitude of the semi-metallic overlap of valence- and conduction band was determined by an analysis of the two-carrier conductance and is in agreement with band structure calculations. The band gap of the semiconducting sample was determined by measurements of the temperature dependence of the conductance at the charge-neutrality point. Agreement with the value expected from theory has been achieved for the first time in this work. The influence of the band gap on the stability of QSH edge state conductance has been investigated on a set of six samples. The band gap of the set spans a range of 10 to 55 meV. The latter value has been achieved in a highly compressively strained QW, has been confirmed by temperature-dependent conductance measurements, and is the highest ever reported in the inverted regime. Studies of the carrier mobility reveal a degradation of the sample quality with increasing Zn-fraction in the superlattice, in agreement with HRXRD observations. The enhanced band gap does not suppress scattering mechanisms in QSH edge channels, but lowers the conductance in the plane of the 2DEG. Hence, edge state conductance is the dominant conducting process even at elevated temperatures. An increase in conductance with increasing temperature has been found, in agreement with reports from other groups. The increase follows a power-law dependency, the underlying physical mechanism remains open. A cause for the lack of an increase of the QSH edge state conductance with increasing energy gap has been discussed. Possibly, the sample remains insulating even at finite carrier densities, due to localization effects. The measurement does not probe the QSH edge state conductance at the situation where the Fermi energy is located in the center of the energy gap, but in the regime of maximized puddle-driven scattering. In a first set of measurements, it has been shown that the QSH edge state conductance can be influenced by hysteretic charging effects of trapped states in the insulating dielectric. A maximized conductance of \(1.6\ \text{e}^2/\text{h}\) was obtained in a \(58\ \mu\text{m}\) edge channel. Finally, measurements on three dimensional samples have been discussed. Recent theoretical works assign compressively strained HgTe bulk layers to the Weyl semi-metal class of materials. Such layers have been synthesized and studied in magnetotransport experiments for the first time. Pronounced quantum-Hall- and Shubnikov-de-Haas features in the Hall- and longitudinal resistance indicate two-dimensional conductance on the sample surface. However, this conductance cannot be assigned definitely to Weyl surface states, due to the inversion of \(\Gamma_6\) and \(\Gamma_8\) bands. If a magnetic field is aligned parallel to the current in the device, a decrease in the longitudinal resistance is observed with increasing magnetic field. This is a signature of the chiral anomaly, which is expected in Weyl semi-metals. / Die vorliegende Dissertation befasst sich mit der Verspannung in kristallinen HgTe Dünnschichtsystemen. Solche Systeme sind aufgrund ihrer Zugehörigkeit zur Materialklasse der topologischen Isolatoren von besonderem Interesse. Eine wesentliche Aufgabe bestand in der experimentellen Kontrolle der Verspannung der HgTe Schichten. Dies wurde durch ein neues Epitaxieverfahren erreicht. Der Erfolg des Verfahrens konnte durch kristallografische Analysemethoden und Magnetotransportmessungen bestätigt werden. Im Rahmen dieser Arbeit wurde Verspannung in dünnen Schichten durch kohärentes Wachstum auf kristallinen Substraten induziert. Kohärentes Wachstum bedeutet hierbei, dass die Schicht unter Beibehaltung der Substratgitterkonstante in der Ebene parallel zu der Substrat-Epischicht-Grenzfläche auf ein Substrat aufgewachsen wird. Die Abweichung der Gitterkonstanten von Substrat und unverspannter Epischicht (sog. Gitterfehlpassung) bestimmt den Grad der Verspannung. Die Schicht antwortet auf die Verspannung in der Ebene mit einer Änderung der Gitterkonstante senkrecht zur Grenzfläche. Dieser Zusammenhang ist entscheidend sowohl für die korrekte Interpretation von Messungen durch hochauflösende Röntgendiffraktometrie (engl. high resolution X-ray diffraction, HRXRD), als auch für die exakte Bestimmung der Banddispersion. Die Gitterkonstante von HgTe ist kleiner als die von CdTe. Daher ist HgTe tensil verspannt wenn es auf ein CdTe Substrat aufgewachsen wird, es kann aber durch die Verwendung von geeigneten \(\text{Cd}_{1-x}\text{Zn}_{x}\text{Te}\) Substraten prinzipiell auch kompressiv verspannt gewachsen werden. Dieses Konzept wurde in dieser Arbeit modifiziert und angewandt. Epischichten wurden mittels Molekularstrahlepitaxie (engl. molecular-beam epitaxy, MBE) hergestellt. Als Alternative zu kommerziellen CdTe und \(\text{Cd}_{0.96}\text{Zn}_{0.04}\text{Te}\) Substraten wurde zunächst das epitaktische Wachstum dicker Schichten (sog. Buffer) CdTe auf GaAs:Si Substraten etabliert. Der Parameterraum für optimales Wachstum wurde anhand von Rasterkraftmikroskopie- und HRXRD Studien eingegrenzt. HRXRD Messungen zeigen eine Zunahme der Qualität mit zunehmender Dicke, die einem Potenzgesetz folgt. Im Vergleich zu reinen CdTe Substraten wurde eine Restverspannung im Buffer beobachtet, wobei eine Kombination aus endlicher Schichtdicke und unterschiedlichen thermischen Ausdehnungskoeffizienten von CdTe und GaAs als Ursache ausgemacht wurde. Um die Verspannung in HgTe Epischichten kontrollieren zu können, wurde ein neuer Substrattyp mit frei einstellbarer Gitterkonstante entwickelt. Durch eine Kombination aus MBE und Atomlagenepitaxie (ALE) wurden spezielle \(\text{CdTe}- \text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\) Übergitter auf GaAs:Si gewachsen, und wiederum mittels HRXRD analysiert. Die ALE der \(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\) Schicht ist selbstbegrenzend auf eine Monolage, und die effektive Gitterkonstante des Übergitters konnte durch die Variation der Dicke der CdTe Schicht einfach und reproduzierbar kontrolliert werden. Eine Abnahme der Schichtqualität wurde mit zunehmendem Zinkgehalt beobachtet, der Effekt ist allerdings weniger stark ausgeprägt als in vergleichbaren ternären \(\text{Cd}_{1-x}\text{Zn}_{x}\text{Te}\) Einfachschichten. HgTe Quantentröge (engl. quantum wells, QWs) zwischen CdHgTe Barrieren wurden auf vergleichbare Weise auf Übergittern und konventionellen CdTe bzw. \(\text{Cd}_{0.96}\text{Zn}_{0.04}\text{Te}\) Substraten hergestellt. Dabei ist eine geringere kritische Schichtdicke des CdHgTe Barrierenmaterials auf Übergittersubstraten zu beachten. Neben der Verspannung ist die Trogdicke der zweite entscheidende Parameter für die elektronischen Eigenschaften der Schicht. Sie wurde anhand von Schwebungen in den Schichtdickenoszillationen der HRXRD Messung oder durch Röntgenreflektometrie auf etwa \(\pm\) 0.5 nm genau bestimmt. Es konnte erstmalig mit epitaktischen Mitteln kompressive Verspannung in HgTe QWs induziert werden (d.h. die effektive Gitterkonstante des Übergitters ist kleiner als die des HgTe). Es wurde gezeigt, dass das Problem der Gitterfehlpassung von Übergitter und Barriere durch die Verwendung von CdHgTe-ZnHgTe Übergittern anstelle von CdHgTe als Barrierenmaterial umgangen werden kann, und dass das kompressiv verspannte Wachstum von dickeren Schichten HgTe (sog. Bulk Material, Dicke mindestens 50 nm) ebenfalls möglich ist. Mit dem Verspannungszustand steht ein neuer Freiheitsgrad in der Fertigung von HgTe Epischichten zur Verfügung. Dieser beeinflusst die elektronische Bandstruktur von QWs und Bulk Schichten entscheidend. Verspannung in Bulk-Material hebt die Energieentartung der \(\Gamma_8\) Bänder bei \(\mathbf{k}=0\) auf. Tensile Verspannung öffnet dabei eine Energielücke, kompressive Verspannung schiebt die Berührpunkte von Valenz- und Leitungsband an Stellen in der Brillouinzone mit \(\mathbf{k}\neq0\). Eine derartige Situation wurde im Rahmen dieser Arbeit erstmals experimentell realisiert. Es wurde weiterhin demonstriert, dass in QWs mit topologisch invertierter Bandreihenfolge die thermische Bandlücke des zweidimensionalen Elektronengases (2DEG) durch kompressive Verspannung signifikant erhöht werden kann. Außerdem wird, je nach Verspannungszustand, halbmetallisches bzw. halbleitendes Verhalten in QWs mit hoher Trogdicke erwartet. Anhand einer Betrachtung der Temperaturabhängigkeit der Subbänder in QWs wurde gezeigt, dass eine temperaturstabile Bandlücke nur bei geeignet gewählten Probenparametern und Temperaturintervallen gegeben ist, und dass die Bandinversion für ausreichend hohe Temperaturen immer aufgehoben wird. Es existieren zahlreiche Modelle die die Stabilität des Quanten-Spin-Hall (QSH) Randzustandes in Verbindung mit der Bandlücke betrachten. Es wird insbesondere eine Zunahme der Stabilität des QSH Zustandes mit zunehmender Bandlücke erwartet. Außerdem besteht eine Diskrepanz zwischen theoretischen Modellen und experimentellen Daten bezüglich der Temperaturabhängigkeit der QSH-Leitfähigkeit. Diese Zusammenhänge konnten mit der neuen Flexibilität im Probendesign gezielt untersucht werden. QWs und Bulk Schichten wurden in Tieftemperatur- Magnetotransportmessungen eingehend untersucht. Dazu wurden Proben lithographisch hergestellt, deren Layout aus zwei Hallbar-Strukturen mit verschiedenen Abmessungen besteht. Dies ermöglicht die Unterscheidung zwischen Ladungstransport in der Fläche des 2DEGs, und dem Probenrand. Das Ferminiveau im 2DEG ist über eine Topgate-Elektrode einstellbar. Es wurde der verspannungsinduzierte Übergang von halbmetallischer zu halbleitender Charakteristik in breiten Quantentrögen gezeigt. Eine Analyse des zwei-Ladungsträger-Verhaltens bestätigt die Größe des halbmetallischen Überlapps von Valenz- und Leitungsband aus Bandstrukturberechnungen. Die Bandlücke der halbleitenden Probe wurde anhand der Temperaturabhängigkeit des Leitwertes am ladungsneutralen Punkt bestimmt. Die Übereinstimmung mit dem theoretisch erwarteten Wert wurde in dieser Arbeit zum ersten Mal erzielt. Der Einfluss der Bandlücke auf die Stabilität des QSH Randkanaltransports wurde anhand einer Serie von sechs Proben untersucht. Die Bandlücke wurde dabei von 10 auf 55 meV erhöht. Der letztgenannte Wert wurde in einem hochkompressiv verspannten QW erreicht, in temperaturabhängigen Leitwertsmessungen bestätigt, und stellt den Bestwert im invertierten Regime dar. Untersuchungen der Beweglichkeit der Ladungsträger zeigen, in Übereinstimmung mit HRXRD Messungen, dass die Probenqualität mit zunehmendem Zinkgehalt im Übergitter abnimmt. Die erhöhte Bandlücke verursacht keine effektive Unterdrückung der Rückstreuung der QSH Randkänale, verringert allerdings die Flächenleitung im 2DEG, sodass der Randkanaltransport auch bei höheren Temperaturen den dominanten Transportmechanismus darstellt. In Übereinstimmung mit Arbeiten anderer Gruppen wurde ein Anstieg des Leitwertes mit der Temperatur gefunden. Dieser lässt sich mit einem Potenzgesetz modellieren, seine Ursache blieb aber ungeklärt. Als Ursache für den ausbleibenden Anstieg des QSH Leitwertes mit zunehmender Bandlücke wurde diskutiert, dass die Probe aufgrund von Lokalisationseffekten auch bei endlicher Ladungsträgerdichte noch isolierend ist. Die Messung des QSH Leitwertes erfolgt möglicherweise nicht bei in der Bandlücke zentrierter Fermienergie, sondern im Regime maximaler Inselrückstreuung. In einer ersten Messreihe wurde weiterhin gezeigt, dass der QSH Leitwert durch hysteretische Umladungseffekte von Störstellen im Isolatormaterial beeinflusst werden kann. Dadurch wurde ein maximaler Leitwert von \(1.6\ \text{e}^2/\text{h}\) in einem \(58\mu\text{m}\) Randkanal erreicht. Abschließend wurden noch Messungen an dreidimensionalen Systemen diskutiert. Neue theoretische Studien ordnen kompressiv verspannte Bulk HgTe Schichten der Materialklasse der Weyl-Halbmetalle zu. Im Rahmen dieser Arbeit wurden zum ersten Mal derartige Schichten gewachsen und in Magnetotransportmessungen studiert. Ausgeprägte Quanten-Hall- und Shubnikov-de-Haas Signaturen im Hall- und Längswiderstand sind ein klares Indiz für zweidimensionalen Transport an der Probenoberfläche. Dieser lässt sich aufgrund der \(\Gamma_6\)-\(\Gamma_8\) Bandinversion in HgTe allerdings nicht eindeutig den Weyl-Oberflächenzuständen zuordnen. Orientiert man ein Magnetfeld parallel zum Probenstrom, so wird eine Abnahme des Längswiderstandes mit zunehmendem Magnetfeld beobachtet. Dies ist eine Signatur der chiralen Anomalie, die in Weyl Halbmetallen erwartet wird.

Page generated in 0.471 seconds