• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 1
  • Tagged with
  • 25
  • 13
  • 11
  • 11
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The ecology of key arthropods for the management of Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae) in Coonawarra vineyards, South Australia.

Paull, Cate January 2008 (has links)
There is currently little knowledge about the dynamics of invertebrates in Australian viticultural ecosystems. This study was conducted in Coonawarra vineyards over three seasons (years) and has focused on identifying natural enemies, their seasonal phenology, multiple species interactions, and potential for the suppression of the pest lepidopteran Epiphyas postvittana (Tortricidae). The work presented in this thesis shows that endemic natural enemies have far greater potential to control E. postvittana than has been realised. An initial survey identified a diverse and abundant range of potential natural enemies. Of these, the species most likely to attack E. postvittana include a predatory mite Anystis baccarum and a number of hymenopteran parasitoids. The most abundant parasitoid in the vineyards was a braconid, Dolichogenidea tasmanica. Understanding the characteristic behaviour of parasitoids in response to host density can help to gauge their potential for pest suppression. The results of large-scale field experiments showed that the response of D. tasmanica to the density of E. postvittana was inversely density-dependent, and that parasitism was consistently higher in Cabernet Sauvignon compared with Chardonnay varieties. Despite the fact that interactions among multiple species of natural enemies can increase or decrease pest suppression, particularly when they share a common prey/host, few multispecies interactions have been investigated. Laboratory studies identified a novel interaction between the predatory mite A. baccarum an abundant predator in the vine canopy, the parasitoid D. tasmanica and host E. postvittana larvae. Although A. baccarum readily ate E. postvittana eggs and free roaming larvae, they could not access larva in their silk leaf rolls. However, the addition of D. tasmanica significantly increased predation of E. postvittana larvae, by altering the behaviour of host larvae and increasing their vulnerability to the mite. Experiments conducted at a landscape level in the Coonawarra showed that D. tasmanica was also present in habitat other than vineyards including native vegetation. However, it was not present in highly disturbed habitats. Although the exact mechanism for this remains unknown, results indicate that viticultural practices and resources in the surrounding landscape can influence the presence of parasitoids. Together, the findings presented in this thesis make a significant contribution towards developing sustainable pest management in Australian viticulture. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1320930 / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2008
12

The ecology of key arthropods for the management of Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae) in Coonawarra vineyards, South Australia.

Paull, Cate January 2008 (has links)
There is currently little knowledge about the dynamics of invertebrates in Australian viticultural ecosystems. This study was conducted in Coonawarra vineyards over three seasons (years) and has focused on identifying natural enemies, their seasonal phenology, multiple species interactions, and potential for the suppression of the pest lepidopteran Epiphyas postvittana (Tortricidae). The work presented in this thesis shows that endemic natural enemies have far greater potential to control E. postvittana than has been realised. An initial survey identified a diverse and abundant range of potential natural enemies. Of these, the species most likely to attack E. postvittana include a predatory mite Anystis baccarum and a number of hymenopteran parasitoids. The most abundant parasitoid in the vineyards was a braconid, Dolichogenidea tasmanica. Understanding the characteristic behaviour of parasitoids in response to host density can help to gauge their potential for pest suppression. The results of large-scale field experiments showed that the response of D. tasmanica to the density of E. postvittana was inversely density-dependent, and that parasitism was consistently higher in Cabernet Sauvignon compared with Chardonnay varieties. Despite the fact that interactions among multiple species of natural enemies can increase or decrease pest suppression, particularly when they share a common prey/host, few multispecies interactions have been investigated. Laboratory studies identified a novel interaction between the predatory mite A. baccarum an abundant predator in the vine canopy, the parasitoid D. tasmanica and host E. postvittana larvae. Although A. baccarum readily ate E. postvittana eggs and free roaming larvae, they could not access larva in their silk leaf rolls. However, the addition of D. tasmanica significantly increased predation of E. postvittana larvae, by altering the behaviour of host larvae and increasing their vulnerability to the mite. Experiments conducted at a landscape level in the Coonawarra showed that D. tasmanica was also present in habitat other than vineyards including native vegetation. However, it was not present in highly disturbed habitats. Although the exact mechanism for this remains unknown, results indicate that viticultural practices and resources in the surrounding landscape can influence the presence of parasitoids. Together, the findings presented in this thesis make a significant contribution towards developing sustainable pest management in Australian viticulture. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1320930 / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2008
13

Responses of males to a pheromone blend of female Oriental fruit moth with and without E8, E10-dodecadien-1-ol, a peromone component of codling moth (Lepidoptera: Tortricidae)

Allred, Darin B. 18 April 1995 (has links)
Graduation date: 1995
14

Investigation of the larval parasitoids of the false codling moth, Cryptophlebia Leucotreta (Meyrick) (Lepidoptera: Tortricidae), on citrus in South Africa

Sishuba, Nomahlubi January 2004 (has links)
The study examined the larval parasitoids of Cryptophlebia leucotreta (Meyrick) on citrus in South Africa and aimed to improve the existing rearing techniques of C. leucotreta with a view to mass rearing of biological control agents. The biological characteristics of Agathis bishopi Nixon (Hymenoptera: Braconidae) were studied, with an emphasis on parasitism rates in the field, host stage preference, developmental rate, life span and offspring sex ratios. Two larval parasitoids, A. bishopi and Apophua leucotretae (Wilkinson) (Hymenoptera: Ichneumonidae), and an egg parasitoid, Trichogrammatoidea cryptophlebiae Nagaraja (Hymenoptera: Trichogrammatidae), were recorded on C. leucotreta on citrus. A. bishopi was the more abundant of the larval parasitoids and exhibited density dependent parasitism. The highest parasitism rates were observed in December with up to 38% in Sundays River Valley and 34% in Gamtoos River Valley, at a time when the highest false codling moth infestations were observed. Agathis bishopi was recorded only in the Eastern Cape Province. The sex ratio of A. bishopi was biased towards females throughout the study (77% in Gamtoos River Valley and 72% in Sundays River Valley). Agathis bishopi is a solitary, koinobiont, larval-pupal endoparasitoid. The species showed a preference for 1st and 2"d instar hosts. Females regulate the sex of their progeny according to the size and larval stage of the host, ovipositing unfertilised eggs in younger, smaller larvae (1st instars) and fertilised eggs in older, larger larvae (2nd instars). The developmental rate of A. bishopi is in synchrony with that of the moth and adults emerge when adult moths that have escaped parasitism emerge. Agathis bishopi and T. cryptophlebiae compliment each other because they have different niches and strategies of attack. Integrating A. bishopi and T. cryptophlebiae into the management of citrus orchards has potential to suppress false codling moth. Larger rearing containers seemed ideal for large-scale rearing of false codling moth. A higher percentage of adults was obtained from larvae reared in larger containers than in smaller ones. The width of the sponges used as stoppers prevented escape of the larvae. Media prepared in larger containers are easier and simpler to prepare than in smaller ones, thus eliminating many precautions otherwise necessary to prevent contamination. Moth production was greatly reduced by the high concentration of Sporekill used for egg decontamination.
15

Agathis bishopi (Nixon) (Hymenoptera: braconidae) its biology and usefulness as a biological control agent for false codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: tortricidae), on citrus bishopi (Nixon) (Hymenoptera: braconidae) its biology and usefulness as a biological control agent for false codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: tortricidae), on citrus

Gendall, Kierryn Leigh January 2008 (has links)
The false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), is one of the major pests of citrus in South Africa, the others being mealybug, Mediterranean fruit fly, bollworm and some mites. Due to problems such as the expense of pesticides, insects evolving pesticide resistance (Hogsette 1999), chemical residue on the skin of export fruit and the negative impact of pesticides on the environment, it became necessary to find alternative methods for pest control (Viggiani 2000). Agathis bishopi (Nixon) (Hymenoptera: Braconidae), a larval parasitoid of false codling moth known only from the Sundays River Valley area (Sishuba 2003), offers a means of control for the pest. A total of 11 389 navel oranges were collected from various orchards in the Addo/Kirkwood area, and false codling moth larvae infested 36.09% of the fruit. A single parasitoid species, A. bishopi, was reared from these larvae. In 2006 the highest parasitism rate, 11.43%, was recorded in May and in 2007, the highest parasitism rate, 13.27%, was in April. Agathis bishopi parasitizes larvae in instars 2 and 3, possibly due to the accessibility of these younger instars to the female parasitoid and possibly due to the length of the life cycle of this koinobiont. Second instar hosts yielded the highest number of parasitoids, and there was no emergence of parasitoids from fifth instar larvae. Females of A. bishopi live for 18.5 days (n = 20; S.E. = 3.1) and males for 8.25 days (n = 20; S.E. = 1.23). Females produce an average of 23 offspring in a lifetime, while female false codling moths produce about 800 eggs each. A high number of parasitoids will be required per hectare to reduce the population of false codling moth. Captive rearing of A. bishopi proved difficult due to viral and fungal contamination. Agathis bishopi has potential for use in an integrated pest management programme once the hurdle of mass-rearing has been overcome.
16

Evaluation of Semiochemicals for Attractiveness to Multiple Tortricid (Lepidoptera) Pests in Apple Orchards

Giri, Ajay P 28 October 2022 (has links)
Tortricid moths (Lepidoptera) are known for their outstanding olfaction capabilities that allow them to detect, process, and respond to chemical information emitted by host or non-host plants. Such an ability to filter out odors from the complex mixture to locate their host has allowed researchers and integrated pest management (IPM) practitioners to develop and implement semiochemically-based pest control strategies. The major goal of this study was to evaluate, under field conditions, the response of male and female oriental fruit moth (OFM), codling moth (CM), redbanded leafroller (RBLR) and three lined leafroller (TLLR) to experimental kairomone lures in commercial apple orchards in Massachusetts. My results indicate that (1) addition of benzaldehyde to Megalure® or to TRE2266 significantly increased captures of OFM males but not of CM males, (2) benzaldehyde was a strong male attractant-it was as attractive as Megalure® to OFM males, and (3) TRE2266 attracted significantly more RBLR than any other lure and by adding benzaldehyde it became attractive to TLLR. These findings highlight the opportunity to work with benzaldehyde to develop more efficient semiochemical-based monitoring and control systems for tortricid moths.
17

Entomopathogenic fungi for control of soil-borne life stages of false codling moth, Thaumatotibia leucotreta (Meyrick) (1912) (Lepidoptera: Tortricidae)

Coombes, Candice Anne January 2013 (has links)
False codling moth (FCM), Thaumatotibia leucotreta is an extremely important pest of citrus in South Africa and with the shift away from the use of chemicals, alternate control options are needed. One avenue of control which has only recently been investigated against the soil-borne life stages of FCM is the use of entomopathogenic fungi (EPF). In 2009, 12 entomopathogenic fungal isolates collected from South African citrus orchards showed good control potential during laboratory conducted bioassays. The aim of this study was to further analyse the potential of these isolates through concentration-dose and exposure-time response bioassays. After initial re-screening, concentration-dose response and exposure-time response sandconidial bioassays, three isolates were identified as exhibiting the greatest control potential against FCM in soil, Metarhizium anisopliae var. anisopliae (G 11 3 L6 and FCM Ar 23 B3) and Beauveria bassiana (G Ar 17 B3). Percentage mycosis was found to be directly related to fungal concentration as well as the amount of time FCM 5th instar larvae were exposed to the fungal conidia. LC50 values for the three isolates were not greater than 1.92 x 10⁶ conidia.ml⁻ₑ and at the LC₅₀, FCM 5th instar larvae would need to be exposed to the fungus for a maximum of 13 days to ensure a high mortality level. These isolates along with two commercially available EPF products were subjected to field persistence trials whereby net bags filled with a mixture of autoclaved sand and formulated fungal product were buried in an Eastern Cape citrus orchard. The viability of each isolate was measured on a monthly basis for a period of six months. All isolates were capable of persisting in the soil for six months with the collected isolates persisting far better than the commercially used isolates. Two of the isolates, G 11 3 L6 and G Ar 17 B3, were subjected to small scale laboratory application trials. Two formulations were investigated at two concentrations. For each isolate, each formulation and each concentration, FCM 5th instar larvae were applied and allowed to burrow into the soil to pupate before fungal application or after fungal application. Contact between fungi and FCM host is essential as, in contrast to pre-larval treatments, percentage mortality in post-larval treatments was low for both formulations and both isolates. For isolate G Ar 17 B3, a conidial suspension applied as a spray at a concentration of 1 x 10⁷ conidia.ml⁻ₑ obtained the highest percentage mortality (80 %). For isolate G 11 3 L6 however, both formulations performed equally well at a high, 1 x10⁷ conidia.ml⁻ₑ concentration (conidial suspension: 60 %; granular: 65 %) The results obtained thus far are promising for the control of FCM in citrus, but if these EPFs are to successfully integrate into current FCM control practices more research, some of which is discussed, is essential
18

Assessment of Granulovirus, Spinosad, and Mating Disruption for Controlling <i>Cydia Pomonella</i> L. [Lepidoptera: Tortricidae] in Organic Coastal California Apple Orchards

Lukehart, Raven 01 August 2018 (has links) (PDF)
Codling moth, Cydia pomonella[Lepidoptera: Tortricidae], is a major entomological pest of apples, pears, and walnuts cross the world (Pajac et al. 2016). Female codling moths lay eggs on the apple exocarp and larvae burrow within the fruit causing economic losses to fruit growers.Organic apple orchards in San Luis Obispo, CA currently have three codling moth, Cydia pomonella,control options commercially available including granulovirus (CpVG), spinosad, and mating disruption. In field tests on apple (Malus), we compare percent fruit injury between treatments of granulovirus (2.43 oz/ha Cyd-X® organically approved, Certis USA, Columbia MD), spinosad (4.05 oz/ha Entrust® Naturalyte® organically approved WP formation, Dow AgroSciences, Indianapolis IN), and a control. We also compared mating disruption in form of codling moth Codlemone® sex pheromone (257 ties/ha (506 mg)/acre Isomate®-OFM TT organically approved Pacific Biocontrol Corporation Vancouver, WA) against a control. Delta taps and 1 mg pheromone lures were used to trap males and track the degree day (DD) model for the two orchard’s codling moth populations to determine application timing for each treatment. A preliminary DD model was used based on the University of California at Davis Agricultural Extension codling moth DD model. During 2016 trialsno detectible control was provided by spray treatments with an average fruit injury of 26% control, 23% granulovirus, 28% spinosad. During 2016 trialsno detectible control was provided by mating disruption with an average fruit injury of 16% control and 16% pheromone. During 2017 trials there was detectible control provided by the treatments to the crop by both spray treatmentsand pheromone ties. 2017 average fruit injury for spray treatments was 51% control, 20% granulovirus, and 14% spinosad. 2017 average fruit injury for mating disruption was 29% control and 6% pheromone. Data suggest underlying relationship between location specific climate factors, cultivars, codling moth populations, and treatment efficacy.
19

Studies on existing and new isolates of Cryptophlebia leucotreta granulovirus (CrleGV) on Thaumatotibia leucotreta populations from a range of geographic regions in South Africa / Studies on existing and new isolates of Cryptophlebia leucotreta granulovirus (CrieGV) on Thaumatotibia leucotreta populations from a range of geographic regions in South Africa

Opoku-Debrah, John Kwadwo January 2012 (has links)
Baculoviruses are arthropod-specific DNA viruses that are highly virulent to most lepidopteran insects. Their host specificity and compatibility with IPM programmes has enabled their usage as safe microbial insecticides (biopesticides). Two baculovirus-based biopesticides, Cryptogran and Cryptex, which have been formulated with Cryptophlebia leucotreta granulovirus (CrleGV) have been registered for the control of false codling moth (FCM), Thaumatotibia (=Cryptophlebia) leucotreta (Meyrick) (Lepidoptera: Tortricidae) in South Africa and have been successfully incorporated into IPM programmes. However, several studies have indicated that insects can develop resistance to baculovirus-based biopesticide as was shown with field populations of codling moth (CM), Cydia pomonella (L.), which developed resistance to the biopesticide Cydia pomonella granulovirus (CpGV-M) in Europe. Other studies have shown that, under laboratory conditions, FCM populations differ in their susceptibility to Cryptogran and Cryptex. In order to investigate difference in susceptibility as well as protect against any future resistance by FCM to Cryptogran and Cryptex, a search for novel CrleGV-SA isolates from diseased insects from different geographic regions in South Africa was performed. Six geographic populations (Addo, Citrusdal, Marble Hall, Nelspruit, Baths and Mixed colonies) of FCM were established and maintained in the laboratory. Studies on the comparative biological performance based on pupal mass, female fecundity, egg hatch, pupal survival, adult eclosion and duration of life cycle of the Addo, Citrusdal, Marble Hall, Nelspruit and Mixed colonies revealed a low biological performance for the Citrusdal colony. This was attributed to the fact that FCM populations found in the Citrusdal area are not indigenous and may have been introduced from a very limited gene pool from another region. When insects from five colonies, excluding the Baths colony, were subjected to stress by overcrowding , a latent baculovirus resident in the Addo, Nelspruit, Citrusdal, Marble Hall and Mixed colonies was brought into an overt lethal state. Transmission electron micrographs revealed the presence of GV occlusion bodies (OBs) in diseased insects. DNA profiles obtained by single restriction endonuclease analysis of viral genomic DNA using BamH 1, Sa/1, Xba1 , Pst1, Xh01 , Kpn1, Hindlll and EcoR1 revealed five CrleGV-SA isolates latent within the insect populations. The new isolates were named CrleGV-SA Ado, CrleGV-SA Cit, CrleGV-SA Mbl, CrleGVSA Nels and CrleGV-SA Mix isolates. The novelty of the five CrleGV-SA isolates was confirmed by the presence of unique submolar bands, indicating that each isolate was genetically different. PCR amplification and sequencing of the granulin and egt genes from the five isolates revealed several single nucleotide polymorph isms (SNPs) which, in some cases, resulted in amino acid substitutions. DNA profiles from RFLPs, as well as phylogenetic analysis based on granulin and egt sequencing showed the presence of two CrleGV-SA genome types for the CrleGV-SA isolate. Cryptex and CrleGV-SA Ado, CrleGV-SA Cit, CrleGV-SA Mbl and CrleGV-SA Mix were placed as members of Group one CrleGV-SA, and Cryptogran and CrleGV-SA Nels isolate were placed into Group two CrleGV-SA. In droplet feeding bioassays, the median survival time (STso) for neonate larvae inoculated with Group one and two CrleGV-SA were determined to range from 80 - 88 hours (3.33 - 3.67 days), for all five colonies. LDso values for Group one and two CrleGV-SA against neonates from the Addo, Citrusdal, Marble Hall, Nelspruit and Mixed colonies varied between some populations and ranged from 0.80 - 3.12 OBs per larva, indicating some level of variation in host susceptibility. This is the first study reporting the existence of genetically distinct CrleGV baculovirus isolates infecting FCM in different geographical areas of South Africa. The results of this study have broad-ranging implications for our understanding of baculovirus-host interactions and for the application of baculovirus basedbiopesticides.
20

Species delimitation in the Choristoneura fumiferana species complex (Lepidoptera: Tortricidae)

Lumley, Lisa Margaret 11 1900 (has links)
Species identifications have been historically difficult in the economically important spruce budworm (Choristoneura fumiferana) pest complex. Morphological, ecological, behavioural, and genetic characters have been studied to try to understand the taxonomy of this group, but diagnostic character states differ in frequency rather than being complete replacements between each species. I developed a morphology-based character system that focuses on forewing colour components (Chapter 2), as well as eight simple sequence repeats (SSRs, also referred to as microsatellite markers) (Chapter 3). I tested these along with a 470 bp region of COI mitochondrial DNA (mtDNA) (Chapter 2, 4) to determine their congruence with putative species that were identified by adaptive traits (larval host plant, length of larval diapause, larval and adult morphology, pheromone attraction, distribution). The morphometrics system was effective for identification of the five species tested, with only slight overlap between C. fumiferana and C. biennis. MtDNA distinguished C. fumiferana and C. pinus pinus, but the remaining species shared haplotypes. SSRs distinguished four species (C. fumiferana, C. pinus pinus, C. retiniana, C. lambertiana) but the remaining four species that were included in this survey (Chapter 4) remained mixed within two populations. There was evidence for hybridization between several species pairs. I also conducted a detailed study (Chapter 5) in Cypress Hills, an isolated remnant coniferous forest in western Canada, where identifying individuals from the Choristoneura fumiferana complex has been impossible due to the unusual ecogeographic characteristics of the area. I integrated data on behaviour, ecology, morphology, mtDNA, and SSRs, comparing Cypress Hills populations to those from other regions of North America to determine which species they resembled most. I delimited at least three populations, resembling C. fumiferana, C. occidentalis and C. lambertiana. Adult flight phenology, along with pheromone attraction, were identified as major isolating mechanisms between these populations. My studies highlighted the importance of integrative taxonomy for understanding species boundaries. Their patterns of differentiation suggest that spruce budworm species have recently diverged via natural selection in spite of some gene flow. Overall, this work is intended to contribute to more accurate identification of specimens and a better understanding of the evolutionary processes that drive speciation. / Systematics and Evolution

Page generated in 0.0313 seconds