Spelling suggestions: "subject:"total byvariation 2distance"" "subject:"total byvariation 4distance""
1 |
Consecutive Covering Arrays and a New Randomness TestGodbole, A. P., Koutras, M. V., Milienos, F. S. 01 May 2010 (has links)
A k × n array with entries from an "alphabet" A = { 0, 1, ..., q - 1 } of size q is said to form a t-covering array (resp. orthogonal array) if each t × n submatrix of the array contains, among its columns, at least one (resp. exactly one) occurrence of each t-letter word from A (we must thus have n = qt for an orthogonal array to exist and n ≥ qt for a t -covering array). In this paper, we continue the agenda laid down in Godbole et al. (2009) in which the notion of consecutive covering arrays was defined and motivated; a detailed study of these arrays for the special case q = 2, has also carried out by the same authors. In the present article we use first a Markov chain embedding method to exhibit, for general values of q, the probability distribution function of the random variable W = Wk, n, t defined as the number of sets of t consecutive rows for which the submatrix in question is missing at least one word. We then use the Chen-Stein method (Arratia et al., 1989, 1990) to provide upper bounds on the total variation error incurred while approximating L (W) by a Poisson distribution Po (λ) with the same mean as W. Last but not least, the Poisson approximation is used as the basis of a new statistical test to detect run-based discrepancies in an array of q-ary data.
|
2 |
On the Convergence to Uniformity of a Random Walk on SU(N)Hoti, Rilind, Lundqvist, Viktor January 2024 (has links)
We study a random walk on the special unitary group SU(N) consisting of a product of matrices chosen Haar uniformly from a fixed conjugacy class. In particular, we make use of the representation theory of matrix Lie groups to show two results about the rate of convergence of the random walk's distribution to the Haar measure in total variation distance. We derive a lower bound in total variation distance before a threshold number of steps, which appears to be an example of a cut-off phenomenon, and for dimension N=2 we prove exponentially fast convergence.
|
3 |
On Random k-Out Graphs with Preferential AttachmentPeterson, Nicholas Richard 28 August 2013 (has links)
No description available.
|
4 |
Approximations and Applications of Nonlinear Filters / Approximation und Anwendung nichtlinearer FilterBröcker, Jochen 30 January 2003 (has links)
No description available.
|
Page generated in 0.0891 seconds