• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compressive Sensing for 3D Data Processing Tasks: Applications, Models and Algorithms

January 2012 (has links)
Compressive sensing (CS) is a novel sampling methodology representing a paradigm shift from conventional data acquisition schemes. The theory of compressive sensing ensures that under suitable conditions compressible signals or images can be reconstructed from far fewer samples or measurements than what are required by the Nyquist rate. So far in the literature, most works on CS concentrate on one-dimensional or two-dimensional data. However, besides involving far more data, three-dimensional (3D) data processing does have particularities that require the development of new techniques in order to make successful transitions from theoretical feasibilities to practical capacities. This thesis studies several issues arising from the applications of the CS methodology to some 3D image processing tasks. Two specific applications are hyperspectral imaging and video compression where 3D images are either directly unmixed or recovered as a whole from CS samples. The main issues include CS decoding models, preprocessing techniques and reconstruction algorithms, as well as CS encoding matrices in the case of video compression. Our investigation involves three major parts. (1) Total variation (TV) regularization plays a central role in the decoding models studied in this thesis. To solve such models, we propose an efficient scheme to implement the classic augmented Lagrangian multiplier method and study its convergence properties. The resulting Matlab package TVAL3 is used to solve several models. Computational results show that, thanks to its low per-iteration complexity, the proposed algorithm is capable of handling realistic 3D image processing tasks. (2) Hyperspectral image processing typically demands heavy computational resources due to an enormous amount of data involved. We investigate low-complexity procedures to unmix, sometimes blindly, CS compressed hyperspectral data to directly obtain material signatures and their abundance fractions, bypassing the high-complexity task of reconstructing the image cube itself. (3) To overcome the "cliff effect" suffered by current video coding schemes, we explore a compressive video sampling framework to improve scalability with respect to channel capacities. We propose and study a novel multi-resolution CS encoding matrix, and a decoding model with a TV-DCT regularization function. Extensive numerical results are presented, obtained from experiments that use not only synthetic data, but also real data measured by hardware. The results establish feasibility and robustness, to various extent, of the proposed 3D data processing schemes, models and algorithms. There still remain many challenges to be further resolved in each area, but hopefully the progress made in this thesis will represent a useful first step towards meeting these challenges in the future.
2

Estimating Seasonal Drivers in Childhood Infectious Diseases with Continuous Time Models

Abbott, George H. 2010 May 1900 (has links)
Many important factors affect the spread of childhood infectious disease. To understand better the fundamental drivers of infectious disease spread, several researchers have estimated seasonal transmission coefficients using discrete-time models. This research addresses several shortcomings of the discrete-time approaches, including removing the need for the reporting interval to match the serial interval of the disease using infectious disease data from three major cities: New York City, London, and Bangkok. Using a simultaneous approach for optimization of differential equation systems with a Radau collocation discretization scheme and total variation regularization for the transmission parameter profile, this research demonstrates that seasonal transmission parameters can be effectively estimated using continuous-time models. This research further correlates school holiday schedules with the transmission parameter for New York City and London where previous work has already been done, and demonstrates similar results for a relatively unstudied city in childhood infectious disease research, Bangkok, Thailand.
3

Analyse d'image hyperspectrale / Hyperspectral Image Analysis

Faivre, Adrien 14 December 2017 (has links)
Les travaux de thèse effectués dans le cadre de la convention Cifre conclue entrele laboratoire de mathématiques de Besançon et Digital Surf, entreprise éditrice dulogiciel d’analyse métrologique Mountains, portent sur les techniques d’analyse hyperspectrale.Sujet en plein essor, ces méthodes permettent d’exploiter des imagesissues de micro-spectroscopie, et en particulier de spectroscopie Raman. Digital Surfambitionne aujourd’hui de concevoir des solutions logicielles adaptées aux imagesproduites par ces appareils. Ces dernières se présentent sous forme de cubes de valeurs,où chaque pixel correspond à un spectre. La taille importante de ces données,appelées images hyperspectrales en raison du nombre important de mesures disponiblespour chaque spectre, obligent à repenser certains des algorithmes classiquesd’analyse d’image.Nous commençons par nous intéresser aux techniques de partitionnement de données.L’idée est de regrouper dans des classes homogènes les différents spectres correspondantà des matériaux similaires. La classification est une des techniques courammentutilisée en traitement des données. Cette tâche fait pourtant partie d’unensemble de problèmes réputés trop complexes pour une résolution pratique : les problèmesNP-durs. L’efficacité des différentes heuristiques utilisées en pratique était jusqu’àrécemment mal comprise. Nous proposons des argument théoriques permettantde donner des garanties de succès quand les groupes à séparer présentent certainespropriétés statistiques.Nous abordons ensuite les techniques de dé-mélange. Cette fois, il ne s’agit plus dedéterminer un ensemble de pixels semblables dans l’image, mais de proposer une interprétationde chaque pixel comme un mélange linéaire de différentes signatures spectrales,sensées émaner de matériaux purs. Cette déconstruction de spectres compositesse traduit mathématiquement comme un problème de factorisation en matrices positives.Ce problème est NP-dur lui aussi. Nous envisageons donc certaines relaxations,malencontreusement peu convaincantes en pratique. Contrairement au problème declassification, il semble très difficile de donner de bonnes garanties théoriques sur laqualité des résultats proposés. Nous adoptons donc une approche plus pragmatique,et proposons de régulariser cette factorisation en imposant des contraintes sur lavariation totale de chaque facteur.Finalement, nous donnons un aperçu d’autres problèmes d’analyse hyperspectralerencontrés lors de cette thèse, problèmes parmi lesquels figurent l’analyse en composantesindépendantes, la réduction non-linéaire de la dimension et la décompositiond’une image par rapport à une librairie regroupant un nombre important de spectresde référence. / This dissertation addresses hyperspectral image analysis, a set of techniques enabling exploitation of micro-spectroscopy images. Images produced by these sensors constitute cubic arrays, meaning that every pixel in the image is actually a spectrum.The size of these images, which is often quite large, calls for an upgrade for classical image analysis algorithms.We start out our investigation with clustering techniques. The main idea is to regroup every spectrum contained in a hyperspectralimage into homogeneous clusters. Spectrums taken across the image can indeed be generated by similar materials, and hence display spectral signatures resembling each other. Clustering is a commonly used method in data analysis. It belongs nonetheless to a class of particularly hard problems to solve, named NP-hard problems. The efficiency of a few heuristics used in practicewere poorly understood until recently. We give theoretical arguments guaranteeing success when the groups studied displaysome statistical property.We then study unmixing techniques. The objective is no longer to decide to which class a pixel belongs, but to understandeach pixel as a mix of basic signatures supposed to arise from pure materials. The mathematical underlying problem is again NP-hard.After studying its complexity, and suggesting two lengthy relaxations, we describe a more practical way to constrain the problemas to obtain regularized solutions.We finally give an overview of other hyperspectral image analysis methods encountered during this thesis, amongst whomare independent component analysis, non-linear dimension reduction, and regression against a spectrum library.
4

Μέθοδοι βελτίωσης της χωρικής ανάλυσης ψηφιακής εικόνας

Παναγιωτοπούλου, Αντιγόνη 12 April 2010 (has links)
Η αντιμετώπιση της περιορισμένης χωρικής ανάλυσης των εικόνων, η οποία οφείλεται στους φυσικούς περιορισμούς που εμφανίζουν οι αισθητήρες σύλληψης εικόνας, αποτελεί το αντικείμενο μελέτης της παρούσας διδακτορικής διατριβής. Στη διατριβή αυτή αρχικά γίνεται προσπάθεια μοντελοποίησης της λειτουργίας του ψηφιοποιητή εικόνας κατά τη δημιουργία αντίγραφου ενός εγγράφου μέσω απλών μοντέλων. Στην εξομοίωση της λειτουργίας του ψηφιοποιητή, το προτεινόμενο μοντέλο θα πρέπει να προτιμηθεί έναντι των μοντέλων Gaussian και Cauchy, που συναντώνται στη βιβλιογραφία, καθώς είναι ισοδύναμο στην απόδοση, απλούστερο στην υλοποίηση και δεν παρουσιάζει εξάρτηση από συγκεκριμένα χαρακτηριστικά λειτουργίας του ψηφιοποιητή. Έπειτα, μορφοποιούνται νέες μέθοδοι για τη βελτίωση της χωρικής ανάλυσης σε εικόνες. Προτείνεται μέθοδος μη ομοιόμορφης παρεμβολής για ανακατασκευή εικόνας Super-Resolution (SR). Αποδεικνύεται πειραματικά πως η προτεινόμενη μέθοδος η οποία χρησιμοποιεί την παρεμβολή Kriging υπερτερεί της μεθόδου η οποία δημιουργεί το πλέγμα υψηλής ανάλυσης μέσω της σταθμισμένης παρεμβολής κοντινότερου γείτονα που αποτελεί συμβατική τεχνική. Επίσης, παρουσιάζονται τρεις νέες μέθοδοι για στοχαστική ανακατασκευή εικόνας SR regularized. Ο εκτιμητής Tukey σε συνδυασμό με το Bilateral Total Variation (BTV) regularization, ο εκτιμητής Lorentzian σε συνδυασμό με το BTV regularization και ο εκτιμητής Huber συνδυασμένος με το BTV regularization είναι οι τρεις μέθοδοι που προτείνονται. Μία πρόσθετη καινοτομία αποτελεί η απευθείας σύγκριση των τριών εκτιμητών Tukey, Lorentzian και Huber στην ανακατασκευή εικόνας super-resolution, άρα στην απόρριψη outliers. Η απόδοση των προτεινόμενων μεθόδων συγκρίνεται απευθείας με εκείνη μίας τεχνικής SR regularized που υπάρχει στη βιβλιογραφία, η οποία αποδεικνύεται κατώτερη. Σημειώνεται πως τα πειραματικά αποτελέσματα οδηγούν σε επαλήθευση της θεωρίας εύρωστης στατιστικής συμπεριφοράς. Επίσης, εκπονείται μία πρωτότυπη μελέτη σχετικά με την επίδραση που έχει κάθε ένας από τους όρους έκφρασης πιστότητας στα δεδομένα και regularization στη διαμόρφωση του αποτελέσματος της ανακατασκευής εικόνας SR. Τα συμπεράσματα που προκύπτουν βοηθούν στην επιλογή μίας αποτελεσματικής μεθόδου για ανακατασκευή εικόνας SR ανάμεσα σε διάφορες υποψήφιες μεθόδους για κάποια δεδομένη ακολουθία εικόνων χαμηλής ανάλυσης. Τέλος, προτείνεται μία μέθοδος παρεμβολής σε εικόνα μέσω νευρωνικού δικτύου. Χάρη στην προτεινόμενη τεχνική εκπαίδευσης το νευρωνικό δίκτυο μαθαίνει το point spread function του ψηφιοποιητή εικόνας. Τα πειραματικά αποτελέσματα αποδεικνύουν πως η προτεινόμενη μέθοδος υπερτερεί σε σχέση με τους κλασικούς αλγόριθμους δικυβικής παρεμβολής και παρεμβολής spline. Η τεχνική που προτείνεται εξετάζει για πρώτη φορά το ζήτημα της σειράς της παρουσίασης των δεδομένων εκπαίδευσης στην είσοδο του νευρωνικού δικτύου. / Coping with the limited spatial resolution of images, which is caused by the physical limitations of image sensors, is the objective of this thesis. Initially, an effort to model the scanner function when generating a document copy by means of simple models is made. In a task of scanner function simulation the proposed model should be preferred over the Gaussian and Cauchy models met in bibliography as it is equivalent in performance, simpler in implementation and does not present any dependence on certain scanner characteristics. Afterwards, new methods for improving images spatial resolution are formulated. A nonuniform interpolation method for Super-Resolution (SR) image reconstruction is proposed. Experimentation proves that the proposed method employing Kriging interpolation predominates over the method which creates the high-resolution grid by means of the weighted nearest neighbor interpolation that is a conventional interpolation technique. Also, three new methods for stochastic regularized SR image reconstruction are presented. The Tukey error norm in combination with the Bilateral Total Variation (BTV) regularization, the Lorentzian error norm in combination with the BTV regularization and the Huber error norm combined with the BTV regularization are the three proposed methods. An additional novelty is the direct comparison of the three estimators Tukey, Lorentzian and Huber in the task of super-resolution image reconstruction, thus in rejecting outliers. The performance of the proposed methods proves superior to that of a regularized SR technique met in bibliography. Experimental results verify the robust statistics theory. Moreover, a novel study which considers the effect of each one of the data-fidelity and regularization terms on the SR image reconstruction result is carried out. The conclusions reached help to select an effective SR image reconstruction method, among several potential ones, for a given low-resolution sequence of frames. Finally, an image interpolation method employing a neural network is proposed. The presented training procedure results in the network learning the scanner point spread function. Experimental results prove that the proposed technique predominates over the classical algorithms of bicubic and spline interpolation. The proposed method is novel as it treats, for the first time, the issue of the training data presentation order to the neural network input.
5

Binary tomography reconstruction of bone microstructures from a limited number of projections / Reconstruction tomographique binaire de microstructures de l'os à partir d'un nombre limité de projections

Wang, Lin 08 June 2016 (has links)
La reconstruction en tomographie discrète de la microstructure de l’os joue un role très important pour le diagnostic de l’ostéoporse, une maladie des os très fréquente. Le diagnostic clinique est basé sur l’absortiométrie duale de rayons X. Avec la tomographie de rayons X, une résolution spatiale élevée avec des images reconstruites in vivo requiert une dose d’irradiation élevée et un temps de balayage long, ce qui est dangereux pour le patient. Une des méthodes pour résoudre ce problème est de limiter le nombre de projections. Cependant, avec cette méthode le problème de reconstruction devient mal posé. Deux types de régularisation par Variation Totale minimisées avec la méthode Alternate Direction of Minimization Method (ADMM) et deux schémas basés sur les méthodes de régularisation Level-set sont appliquées à deux images d’os expérimentales acquises avec un synchrotron (pixel size: 15 μm). Des images de tailles variées et avec différents niveaux de bruit Gaussien additifs ajoutés aux projections sont utlisées pour étudier l’efficacité des méthodes de régularisation. Des minima locaux sont obtenus avec ces méthodes déterministes. Une approche globale d’optimisation est nécessaire pour améliorer les résultats. Des perturbations stochastiques peuvent être un moyen très utile pour échapper aux minima locaux. Dans une première approche, une équation différentielle stochastique basée sur la régularisation level-set est étudiée. Cette méthode améliore les résultats de reconstruction mais ne modifie que les frontières entre les régions 0 et 1. Ensuite une équation aux dérivées partielles stochastique est obtenue avec la régularisation TV pour améliorer la méthode stochastique level-set. A la fin de notre travail, nous avons étendu la méthode de régularisation à des images 3D avec des données réelles. Cette algorithme a été implémenté avec RTK. Nous avons aussi étendu l’approche level-set utilisée pour la tomographie binaire au cas multi-level. / Discrete tomography reconstruction of bone microstructure is important in diagnosis of osteoporosis. One way to reduce the radiation dose and scanning time in CT imaging is to limit the number of projections. This method makes the reconstruction problem highly ill-posed. A common solution is to reconstruct only a finite number of intensity levels. In this work, we investigate only binary tomography reconstruction problem. First, we consider variational regularization methods. Two types of Total Variation (TV) regularization approaches minimized with the Alternate Direction of Minimization Method (ADMM) and two schemes based on Level-set (LS) regularization methods are applied to two experimental bone cross-section images acquired with synchrotron micro-CT. The numerical experiments have shown that good reconstruction results were obtained with TV regularization methods and that level-set regularization outperforms the TV regularization for large bone image with complex structures. Yet, for both methods, some reconstruction errors are still located on the boundaries and some regions are lost when the projection number is low. Local minima were obtained with these deterministic methods. Stochastic perturbations is a useful way to escape the local minima. As a first approach, a stochastic differential equation based on level-set regularization was studied. This method improves the reconstruction results but only modifies the boundaries between the 0 and 1 regions. Then partial stochastic differential equation obtained with the TV regularization semi-norm were studied to improve the stochastic level-set method. The random change of the boundary are performed in a new way with the gradient or wavelet decomposition of the reconstructed image. Random topological changes are included to find the lost regions in the reconstructed images. At the end of our work, we extended the TV regularization method to 3D images with real data on RTK (Reconstruction Toolkit). And we also extended the level-set to the multi-level cases.

Page generated in 0.181 seconds