Spelling suggestions: "subject:"transcription c.regulation"" "subject:"transcription 042regulation""
91 |
Characterization and identification of transcription factors that bind to the tumor necrosis factor -308 polymorphismWoo, Andrew Jonghan January 2003 (has links)
[Formulae and special characters can only be approximated. Please see the pdf version of this abstract for an accurate reproduction.] Tumor necrosis factor (TNF) is a pleiotropic cytokine that mediates a long list of immunological and pathophysiological processes. TNF is produced by a wide variety of cells including immune and non-immune cells, however in most cell types TNF is not expressed prior to stimulation. The function of TNF is mediated via its trimeric domain by binding to TNF receptors that are found on most types of cells, especially of the haematopoietic systems, hence transpiring its effects on a wide variety of cells and organ systems. The cytotoxic (apoptosis) and pro-inflammatory (differentiation, proliferation and activation) functions of TNF are protective but can also result in pathological or deleterious consequences. A biallelic G to A transition polymorphism in the promoter region of TNF at nucleotide position 308 from the transcription start site is suggested to be involved in differential transcriptional regulation of TNF expression. The high TNF producing 308A allele is associated with susceptibility to or worse outcome of many infectious diseases in addition to autoimmune and other pathophysiological conditions. A previous study in our laboratory observed a selective affinity towards the polymorphic 308A allele by an EMSA protein(s) complex, named E. Several other protein complexes were found along with complex E and one of them was identified as Sp1. The identification of complex E was unsuccessful but it was hypothesized to play a major role as transcriptional activator in 308A allele individuals hence transpiring its effect in various pathophysiological states. In this study, the EMSA complexes observed in the TNF promoter region between nucleotides 322 to 283, encompassing the 308 polymorphism, is characterized. EMSA using mutated oligonucleotides mapped the binding sites of complexes B, C, D and E. TRANSFAC database search in addition to previous work revealed the identity of complex C as Sp1 but the rest of complexes remained unknown. Moreover, in contrast to our previous study, the protein(s) in the complex E was found to preferentially bind 308G nucleotide hence posing as a transcriptional repressor, resulting in decreased production state of TNF in 308G allele individuals than 308A allele individuals. In order to characterize putative transcription factors binding to the promoter region, first the biochemical characteristics such as the effects of temperature, salts and cations on DNA binding ability of EMSA complexes were studied. EMSA complexes B, C, DI and E required cations, probably Zn+2, to bind DNA. By optimizing a technique that couples EMSA with SDS-PAGE, the molecular weight of C, DI and E was determined. A novel technique that couples EMSA with IEF determined the pI of complexes B, C, D, DI and E. Although a commonly used technique of identifying unknown DNA-binding protein of interest, Yeast One-Hybrid assay, did not identify complex E, the novel identification method involving chromatography, two-dimensional electrophoresis, EMSA, mass spectrometry and database interrogation successfully identified TNF EMSA complex E as transcription factor Ying Yang 1 (YY1). Supershift EMSA confirmed complex E as YY1. In addition, the supershift assay showed presence of Sp1 and Sp3 in complex C. Similarly, complex DI is identified as Sp3. The novel method in identifying DNA-binding proteins is particularly useful as this technique allows identification of protein seen in EMSA without the need of extensive identification process. YY1 binds to a 6 base pair sequence, 5? TTGAGG 3?, from nt 295 to 290 of TNF promoter. The loss of affinity in 308A allele is caused by transition of underlined G nucleotide to A. The determined and described molecular weight of YY1 in literature is 60 kDa while the theoretical weight is 45 kDa. Both the determined and theoretical pI of YY1 is 5.8. YY1 is a multifunctional transcription factor implicated in both positive and negative regulation of gene expression as well as in initiation of transcription. It is ubiquitously expressed in growing, differentiated, and growth-arrested cells. Although future experiment is yet to establish in vivo presence of YY1 in TNF promoter, our study so far provides convincing evidence that the putative transcription factor that has selective affinity towards 308G allele is indeed YY1.
|
92 |
Transcription regulation and candidate diagnostic markers of esophageal cancerEssack, Magbubah January 2009 (has links)
Philosophiae Doctor - PhD / Esophageal cancer (EC) ranks among the ten most frequent cancers worldwide. Mortality rates associated with EC are very similar to the incidence rates due to the relatively late stage of diagnosis and the poor efficacy of treatment. The aim of this study was to enhance our insights of putative transcriptional circuitry of EC genes, thereby potentially positively impacting our knowledge of therapeutic targets, providing indications as to more appropriate lines of treatment, and additionally allowing for the determination of putative candidate diagnostic markers for the early stage detection of EC.
This thesis reports on the development of a novel comprehensive database (Dragon Database of Genes Implicated in Esophageal Cancer, DDEC) as an integrated knowledge database aimed at representing a gateway to esophageal cancer related data. More importantly, it illustrates how the biocurated genes in the database may represent a reliable starting point for divulging transcriptional regulation, diagnostic markers and the biology related to esophageal cancer. DDEC contains known and novel information for 529 differentially expressed EC genes compiled using scientific publications from PubMed and is freely accessible for academic and non-profit users at http://apps.sanbi.ac.za/ddec/. The novel information provided to users of the DDEC is the lists of putative transcription factors that potentially control the 529 manually curated genes. The value of the information accessible through the database was further refined by providing precompiled text-mined and data-mined reports about each of these genes to allow for easy exploration of information about associations of EC-implicated genes with other human genes and proteins, metabolites and enzymes, toxins, chemicals with
pharmacological effects, disease concepts and human anatomy. This feature has the capacity to display potential associations that are rarely reported and thus difficult to identify, and it enables the inspection of potentially new ‘association hypotheses’ generated based on the precompiled reports.
This study further illustrates how the biocurated esophageal squamous cell
carcinoma (ESCC) genes in the database may represent a reliable starting point for exploring beyond current knowledge of the transcriptional circuitry of estrogen related hormone therapy. The genes were used to develop a method that identified 44 combinations of transcription factors (TFs) that characterize the promoter sequence of estrogen responsive genes implicated in ESCC. These significantly over-represented combinations of TFs were then used to increase confidence in the 47 novel putative estrogen response genes that may be related to ESCC too. Coincidently, two of the novel putative estrogen response genes were verified by current (2009), experimental publications. / South Africa
|
93 |
Regulation of transcription of the Escherichia coli K5 capsule gene cluster region one promoterJia, Jia January 2014 (has links)
Encapsulated Escherichia coli are responsible for a number of life threatening infections of man. These range from urinary tract infections to septicemia and neonatal meningitis. A common property of these E. coli strains is the expression of a polysaccharide capsule or K antigen. The expression of a capsule is an essential virulence factor protecting the bacterium from host defenses. Like many virulence factors capsule gene expression is regulated by temperature, such that at 37 0C inside the host the capsule is expressed whereas at 20 0C it is not. The project used the K5 capsule gene cluster as a model system to study in detail the regulation of capsule gene expression. Expression of E. coli K5 gene cluster is regulated at the transcriptional level by two convergent promoters PR1 and PR3. The temperature regulation-dependent expression is in part controlled at the level of transcription by complex regulatory network involving the regulators SlyA, H-NS and IHF acting at PR1 and PR3. A large 5’ untranslated region (5’ UTR) is involved in transcriptional regulation by interacting with global regulator proteins. In this study, a combination of lacZ reporter gene fusions, 5’ RACE analysis and site-direct mutagenesis at promoter functional elements were used to investigate the promoter. These studies identified that the PR1 promoter was more complex than initially thought and contains, in addition to previously characterized PR1-1 promoter at +1, three additional tandem promoters PR1-2, PR1-3 and PR1-4 transcribing in the same direction from the site +133, +142 and +182, respectively. In order to analyse the contribution for the transcription from PR1 among these multiple promoters, these multiple tandem promoters’ activities were measured by β-galactosidase assay and Real-time quantitative reverse PCR assay. We determined that PR1-2 and PR1-3 are two cryptic promoters with very low transcription activity while PR1-1 and PR1-4 are the major promoters that contributed evenly to the total transcripts into kps operon in the mid-exponential phase. Furthermore, we demonstrated that the promoter PR1-1 and PR1-4 are tightly coupled and the activity of PR1-4 can be co-ordinately reduced by disrupted PR1-1.Different minimal PR1-lacZ promoter fusions were also transformed into strains with mutations in the genes that encode these regulatory proteins (IHF, SlyA and H-NS) and the transcription activity was examined by β-galactosidase assay at both 37 0C and 20 0C. IHF is required indirectly for maximum transcription at PR1-1 promoter but directly represses transcription from PR1-4 due to binding at +160 region at 37 0C. Global regulator H-NS represses the transcription at both 37 0C and 20 0C at PR1 and plays an important role for transcriptional temperature regulation at PR1 region. The anti-repressor SlyA activates transcription at PR1-1 at 37 0C. This study identified for the first time growth phase dependent expression from the PR1 promoter. Also, this study discovered different temporal patterns of promoter PR1-1 and PR1-4 transcription was coordinated with bacterial growth cycle. Overall this study will be helpful to decipher the complex regulation of capsule gene expression in E. coli.
|
94 |
A Model For The Transcriptional Regulation Of The CYP2B1/B2 Gene In Rat LiverPrabhu, Leena 11 1900 (has links) (PDF)
No description available.
|
95 |
Understanding C/EBPbeta LAP/LIP Transcriptional and Adipogenic Potential Through Regulation by HDAC1 and GCN5Salem Abdou, Houssein January 2011 (has links)
The CCAAT/Enhancer Binding Protein Beta (C/EBPβ) is part of the leucine zipper family of transcription factors and is involved in a myriad of processes including cellular proliferation and differentiation. C/EBPβ is expressed as three isoforms (LAP*, LAP, LIP), translated from a single mRNA by a leaky ribosomal scanning mechanism. While LAP* and LAP have activating functions, LIP is recognized as being a repressor of transcription due to its lack of activation domains.
Numerous studies have shown that C/EBPβ acetylation state modulates its activity in a promoter-specific manner. For instance, the acetyltransferases GCN5/PCAF and the deacetylase complex mSin3A/HDAC1 regulate C/EBPβ activity on the C/EBPa promoter. GCN5/PCAF-mediated acetylation of C/EBPβ was shown to positively affect its transcriptional activity in a steroid-dependent mechanism via the glucocorticoid receptor (GR). GR relieves HDAC1 association from C/EBPβ by targeting the deacetylase for proteasomal degradation, hence favouring GCN5-mediated acetylation of C/EBPβ and allowing maximum activation capacity to be reached. In order to further elucidate C/EBPβ activation, I sought to characterize the interplay between GCN5 and HDAC1 in regulating C/EBPβ LAP/LIP activity during murine adipogenesis by identifying their binding domain in C/EBPβ.
I identified a minimal domain located within regulatory domain 1 (RD1) of C/EBPβ that is required for both GCN5 and HDAC1 binding. Furthermore, the loss of the identified domain in C/EBPβ appears to partially mimic the GR effect, thus giving C/EBPβ a higher basal transcriptional activity that accelerates NIH 3T3 and 3T3 L1 adipogenesis. Moreover, I also showed that the LIP isoform inhibitory mode of action is partially mediated through the mSin3A/HDAC1 repressor complex, which gives LIP an active repressor function. In addition to LIP inhibitory function, I also showed that a cysteine residue located in LAP* negatively regulates its transactivating function during murine adipogenesis.
Although RD1 of C/EBPβ has been suggested to act as a negative regulatory domain, I showed that only five residues are responsible for most of its inhibitory effect. Hence, in an attempt to further define sub-domains within RD1, I characterized a new positive regulatory domain at its N-terminal region, which seems to be required for C/EBPβ activity in a promoter-specific manner.
In conclusion, this study not only supports previously hypothesized mechanisms by which C/EBPβ is regulated, but it also redefines the contribution of LAP*, LAP and LIP in regulating transcription. Most importantly, the results emphasize the countless possibilities by which C/EBPβ transactivation potential could be modulated during cellular differentiation.
|
96 |
Cr(VI) Disrupts Chromatin ArchitectureVonHandorf, Andrew P. 22 October 2020 (has links)
No description available.
|
97 |
The Individual Contribution of Transcription Factors Mobilized Following T-cell Receptor (TCR) or Mitogenic Activation in the Reactivation of HIV from LatencyHokello, Joseph Francis 20 May 2010 (has links)
No description available.
|
98 |
An Investigation into Carbon Flow through the Metabolic Networks of<i>Rhodobacter sphaeroides</i>Carter, Michael Steven 07 October 2014 (has links)
No description available.
|
99 |
The L-Idonic acid pathway of escherichia coliBausch, Christoph L. 25 November 2003 (has links)
No description available.
|
100 |
Investigation of the quorum-sensing regulon in the corn pathogen Pantoea stewartiiRamachandran, Revathy 18 April 2014 (has links)
Pantoea stewartii subsp. stewartii is a bacterium that causes Stewart’s wilt disease in corn plants. The bacteria are transmitted to the plants via an insect vector, the corn flea beetle Chaetocnema pulicaria. Once in the plant, the bacteria migrate to the xylem and grow to high cell densities, forming a biofilm by secreting excess capsular exopolysaccharide, which blocks water transport and causes wilting. The timing of virulence factor synthesis is regulated by the cell-density dependent quorum sensing (QS) system. Such temporal regulation is crucial in establishing infection and is orchestrated by the QS-dependent transcriptional regulator EsaR. EsaR represses expression of capsular exopolysaccharide at low cell densities. At high cell densities, an acylated homoserine lactone (AHL) molecule produced during growth by the cognate AHL-synthase EsaI accumulates. The AHL binds to and inactivates EsaR, causing derepression of capsule production.
EsaR is a member of the LuxR family of QS-dependent transcriptional factors. Most LuxR homologs are unstable and/or insoluble in the absence of AHL which has hindered structural studies. Chapter Two describes the changes in the structure of EsaR due to binding of AHL ligand as determined through biochemical methods. EsaR was found to be stable and retain its multimeric state in the absence or presence of AHL, but intra- and inter-domain changes occurred that affect its DNA-binding capacity.
Apart from repressing expression of capsule at low cell-densities, EsaR represses its own expression and activates production of a small RNA, EsaS, with unknown function. In Chapter Three a proteomic approach was used to identify an additional 30 QS-controlled proteins. Genes encoding three of these proteins are directly regulated by EsaR and the EsaR binding sites in the respective promoters were defined. In Chapter Four, a high-throughput RNA-Seq method identified even more genes in the QS regulon that the proteomic approach overlooked. RNA-Seq analysis of rRNA-depleted RNA from two strains of P. stewartii was used as a screen to help identify 11 promoters, subsequently shown to be directly regulated by EsaR in vitro. Most of the genes controlled by QS grouped into three major physiological responses, capsule & cell wall production, surface motility & adhesion and stress response. In Chapter Five, the role of two QS regulated genes, dkgA (encoding 2, 5-diketo-D-gluconate) and lrhA (encoding a repressor of chemotaxis, adhesion and motility), in plant virulence were examined.
These studies have better characterized the QS regulator EsaR and its interaction with the AHL ligand, and shown that QS has a more global response in P. stewartii than previously recognized. Further characterization of the genes identified in this study could facilitate identification of factors crucial in plant pathogenesis or insect-vector symbiosis and aid in the development of molecular-based approaches for possible disease intervention. / Ph. D.
|
Page generated in 0.112 seconds