Spelling suggestions: "subject:"transferência dde calibração"" "subject:"transferência dee calibração""
1 |
Previsão de propriedades das gasolinas do Nordeste empregando espectroscopia NIR/MIR e transferência de calibraçãoHONORATO, Fernanda Araújo January 2006 (has links)
Made available in DSpace on 2014-06-12T23:15:04Z (GMT). No. of bitstreams: 2
arquivo9183_1.pdf: 3734643 bytes, checksum: 84c2b156e03dc9e26311a297b5b3d774 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2006 / Este trabalho tem duas partes, ambas envolvendo espectroscopia no infravermelho e
quimiometria. Na primeira parte, foram obtidos modelos de calibração multivariada baseados
em dados espectrais nas regiões NIR e MIR para prever as principais propriedades de gasolinas
comercializadas na região Nordeste. Foram coletadas 160 amostras de gasolinas e os modelos
de calibração foram construídos considerando-se dados espectrais da região NIR (em dois
caminhos ópticos diferentes - 1 e 10 mm) e MIR, dois algoritmos de calibração (mínimos
quadráticos parciais - PLS e regressão linear múltipla - MLR), e diferentes pré-processamentos
(derivada, alisamento e seleção de variáveis com o Algoritmo Genético, AG, ou o Algoritmo de
Projeções Sucessivas, APS). Analisando-se os erros médios quadráticos relativos de previsão
(RMSEPR) para os vários modelos, observou-se que todas as propriedades envolvidas podem
ser preditas de forma satisfatória a partir do espectro NIR na faixa 1600-2500 nm (caminho
óptico de 1 mm), com calibração por MLR e seleção de variáveis pelo algoritmo genético, com
qualquer dos pré-processamentos utilizados.A outra parte trata do problema de transferência de
calibração. Propôs-se uma nova estratégia para a construção de modelos de calibração robustos
em relação a diferenças entre dois equipamentos. O APS foi utilizado para selecionar variáveis
de forma a minimizar o erro de previsão para o conjunto de teste do equipamento primário,
mas também para um pequeno conjunto de amostras medidas no equipamento secundário
(amostras de transferência). Dois conjuntos de dados foram empregados: espectros MIR de
gasolinas C, para previsão da propriedade T90% (temperatura para 90% de amostra destilada); e
espectros NIR de amostras de milho para previsão do teor de umidade. Os modelos MLR
robustos assim obtidos foram comparados a modelos PLS, utilizando-se padronização direta
em etapas (PDS) para corrigir os espectros do equipamento secundário. Os erros de predição
no equipamento secundário para os modelos MLR robustos foram comparáveis aos dos
modelos PLS-PDS e levemente inferiores aos erros do modelo APSV-MLR
|
2 |
Avaliação do potencial da espectroscopia no infravermelho próximo como método de rotina para a determinação de carbono orgânico do solo / Evaluation of the potential of near infrared spectroscopy as routine method for soil organic carbon analysisSouza, André Marcelo de, 1977- 26 August 2018 (has links)
Orientador: Ronei Jesus Poppi / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T13:27:08Z (GMT). No. of bitstreams: 1
Souza_AndreMarcelode_D.pdf: 34076641 bytes, checksum: 9b864adff6bf9857ffe47d6b6afee68a (MD5)
Previous issue date: 2015 / Resumo: As pesquisas atuais apontam que a espectroscopia no infravermelho próximo (NIR) é a técnica alternativa mais promissora para a determinação de carbono orgânico do solo (SOC) nos laboratórios de todo o mundo em substituição total ou parcial aos métodos tradicionais de via úmida. Considerado este fato, foi desenvolvido e validado um método para a determinação de SOC por espectroscopia NIR, visando seu empregado como método de rotina em laboratórios de análise de solos do Brasil. Para este fim, foram construídos modelos de calibração multivariada a partir de um número expressivo de amostras de solos (1490 amostras, 2.980 espectros) que englobam a variabilidade de solos brasileiros. Estes modelos foram validados através da submissão dos valores previstos das concentrações de matéria orgânica do solo (SOM) ao Programa de Análise de Qualidade de Laboratórios de Fertilidade (PAQLF). As questões envolvendo a transferência de calibração entre múltiplos instrumentos também foram abordadas e a regressão por vetores de suporte (SVR) foi avaliada como alternativa à regressão em mínimos quadrados parciais (PLS). Os resultados alcançados comprovaram de maneira contundente a robustez do método proposto e indicaram que o mesmo pode substitui o método de via úmida, superando seu desempenho em alguns casos. No estudo de transferência de calibração, foi demonstrado que quando dois ou mais espectrofotômetros NIR são empregados na aquisição dos dados, recomenda-se que ambos sejam de mesma configuração. Porém, quando instrumentos diferentes foram envolvidos, o método de atualização do modelo através da matriz aumentada apresentou resultados satisfatórios em relação aos demais métodos avaliados. Existem, no entanto, pelo menos dois gargalos da implementação da espectroscopia NIR em análises de rotina: (1) o elevado custo dos instrumentos em relação ao orçamento dos laboratórios de análise de solos no Brasil; e (2) a necessidade do emprego da quimiometria na etapa de modelagem dos dados. Ambas as questões podem ser solucionadas com políticas de subsídios para compra de instrumentos e intensivos treinamentos em quimiometria e espectroscopia NIR, que podem ser oferecidos pela Empresa Brasileira de Pesquisa Agropecuária e por instituições de ensino superior do Brasil / Abstract: Current research indicates that near infrared spectroscopy (NIR) is the most promising alternative technique for the determination of soil organic carbon (SOC) in laboratories around the world in total or partial replacement traditional wet chemistry methods. Considering this fact, in this research it was developed and validated a method for determination of SOC by NIR spectroscopy, aiming its use in soils laboratories in Brazil as a routine analysis method. To this end, multivariate calibration models were constructed from a large number of soil samples (samples 1490, 2980 spectra) covering the variability of brazilian soils. These models were validated by the submission of the predicted concentrations of soil organic matter (SOM) in the Quality Program of Analysis of Fertility Laboratories (PAQLF). Issues involving the calibration transfer among several instruments were discussed and the support vector regression (SVR) was evaluated as an alternative to PLS. The results proved in a conclusive way the robustness of the proposed method and indicated that it can replace the wet chemistry method, outperforming it in some cases. Some general recommendations that can be drawn from this work are: when two or more NIR spectrophotometers are involved, it is recommended purchase or apply those of same configuration because the transfer methods evaluated generate better models when compared to those of different configuration. However, when different instruments are involved, the method of model updating through the augmented matrix showed satisfactory results when compared to other methods evaluated. There are at least two bottlenecks of the implementation of the NIR spectroscopy method in routine analysis of soil laboratories: (1) the cost of NIR spectroscopy instruments and their maintenance are considered high in relation to the budget of the laboratories of soil analysis in Brazil and (2) the spectral data treatment, which requires the use of chemometrics. Both aspects that hinder the implantation of NIR spectroscopy as a routine method can be solved, with a policy of subsidies to purchase equipment and intensive training in chemometrics that can be offered by Brazilian Corporation of Agricultural Research (Embrapa) and also by brazilian teaching institutions / Doutorado / Quimica Analitica / Doutor em Ciências
|
3 |
Um novo método para transferência de modelos de calibração NIR e uma nova estratégia para classificação de sementes de algodão usando imagem hiperespectral NIRSoares, Sófacles Figueredo Carreiro 20 June 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-09T15:33:48Z
No. of bitstreams: 1
arquivototal.pdf: 4699110 bytes, checksum: ef3b7c0aa5c4758d2c77e65ad6a81ad3 (MD5) / Made available in DSpace on 2017-08-09T15:33:48Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 4699110 bytes, checksum: ef3b7c0aa5c4758d2c77e65ad6a81ad3 (MD5)
Previous issue date: 2016-06-20 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work involves the development of two studies that are presented in chapters 2 and 3. At
first, a new method to perform the calibration transfer was designed. This method was
developed to make use of separate variables instead of using the full spectrum or spectral
windows. To accomplish this task a univariate procedure is initially used to correct the spectra
recorded in the secondary equipment, given a set of transfer samples. A robust regression
technique is then used to obtain a model with small sensitivity with respect to the univariate
correction. The proposed method is employed in two case studies involving near infrared
spectrometric determination of specific mass, research octane number and naphtenes in
gasoline, and moisture and oil in corn. In both cases, better calibration transfer results were
obtained in comparison with piecewise direct standardization (PDS). In the second, a new
strategy for cotton seed classification using near infrared (NIR) hyperspectral images (HSI)
was developed. Initially the cotton seeds samples were recorded on a station HSI image-NIR
and a conventional spectrometer NIR. Thereon, the images were segmented and the mean
spectrum of each seed was extract. Classification models SPA-LDA e PLS-DA based on the
mean spectral were developed for two data sets. The results for models SPA-LDA and PLSDA
showed that the classification with HSI-NIR data set has been achieved with greater
accuracy when compared to models for the NIR-conventional data set. / Este trabalho envolve o desenvolvimento de dois estudos, que são apresentados nos capítulos
2 e 3. No primeiro, um novo método para realizar a transferência de calibração foi concebido.
Este método foi desenvolvido para fazer uso de variáveis isoladas em vez de usar todo o
espectro ou janelas espectrais. Para realizar essa tarefa, um procedimento univariado é
inicialmente usado para corrigir os espectros registrados no equipamento secundário, dado um
conjunto de amostras de transferência. Uma técnica de regressão robusta é então usada para
obter um modelo com pequena sensibilidade em relação aos resíduos da correção univariada.
O novo método é então empregado em dois estudos de caso envolvendo análise
espectrométrica NIR, em que foram determinados os parâmetros massa específica, RON
(Research Octane Number) e teor de naftênicos em gasolina e os teores de água e óleo em
amostras de milho. Os resultados do novo método foram melhores do que os obtidos usando o
método PDS. No segundo, uma nova estratégia para classificação de sementes de algodão
usando imagens hiperespectrais no NIR foi desenvolvido. Inicialmente as amostras de
sementes de algodão foram registradas em uma estação de imagem HSI-NIR e em um
equipamento NIR convencional. Após isso, as imagens foram segmentadas e os espectros
médios de cada semente foram extraídos. Os modelos de classificação SPA-LDA e PLS-DA
baseados nos espectros médios foram construídos para os dois conjuntos de dados. Os
resultados SPA-LDA e PLS-DA para os modelos demonstraram que a classificação com os
dados HSI-NIR foi alcançada com maior exatidão quando comparada aos modelos obtidos
usando o NIR-convencional.
|
Page generated in 0.1036 seconds