• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 238
  • 10
  • 10
  • 9
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 319
  • 319
  • 142
  • 121
  • 115
  • 97
  • 73
  • 65
  • 61
  • 57
  • 57
  • 54
  • 52
  • 51
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Transfer learning approaches for feature denoising and low-resource speech recognition

Bagchi, Deblin 10 September 2020 (has links)
No description available.
172

Recurrent Transfer Learning for Classification of Architectural Distortions in Breast Tomosynthesis

Maidment, Tristan D. 01 June 2020 (has links)
No description available.
173

Detecting flight patterns using deep learning

Carlsson, Victor January 2023 (has links)
With more aircraft in the air than ever before, there is a need for automating the surveillance of the airspace. It is widely known that aircraft with different intentions fly in different flight patterns. Support systems for finding different flight patterns are therefore needed. In this thesis, we investigate the possibility of detecting circular flight patterns using deep learning models. The basis for detection is ADS-B data which is continuously transmitted by aircraft containing information related to the aircraft status. Two deep learning models are constructed to solve the binary classification problem of detecting circular flight patterns. The first model is a Long Short-Term Memory (LSTM) model and utilizes techniques such as sliding window and bidirectional LSTM layers to solve the given task. The second model is a Convolutional Neural Network (CNN) and utilizes transfer learning. For the CNN model, the trajectory data is converted into image representations which are fed into a pre-trained model with a custom final dense layer. While ADS-B is openly available, finding specific flight patterns and producing a labeled data set of that pattern is hard and time-consuming. The data set is therefore expanded using other sources of data. Two additional sources of trajectory data are added to the data set; radar and simulated data. Training a model on data of a different distribution than the model is being evaluated on can be problematic and introduces a new source of error known as training-validation mismatch. One of the main goals of this thesis is to be able to quantify the size of this error to decide if using data from other sources is a viable option. The results show that the CNN model outperforms the LSTM model and achieves an accuracy of 98.2%. The results also show that there is a cost, in terms of accuracy, associated with not only training on ADS-B data. For the CNN model that cost was a 1-4% loss in accuracy depending on the training data used. The corresponding cost for the LSTM model was 2-10%.
174

Evaluating Transfer Learning Capabilities of Neural NetworkArchitectures for Image Classification

Darouich, Mohammed, Youmortaji, Anton January 2022 (has links)
Training a deep neural network from scratch can be very expensive in terms of resources.In addition, training a neural network on a new task is usually done by training themodel form scratch. Recently there are new approaches in machine learning which usesthe knowledge from a pre-trained deep neural network on a new task. The technique ofreusing the knowledge from previously trained deep neural networks is called Transferlearning. In this paper we are going to evaluate transfer learning capabilities of deep neuralnetwork architectures for image classification. This research attempts to implementtransfer learning with different datasets and models in order to investigate transfer learningin different situations.
175

Use of Deep Learning in Detection of Skin Cancer and Prevention of Melanoma

Papanastasiou, Maria January 2017 (has links)
Melanoma is a life threatening type of skin cancer with numerous fatal incidences all over the world. The 5-year survival rate is very high for cases that are diagnosed in early stage. So, early detection of melanoma is of vital importance. Except for several techniques that clinicians apply so as to improve the reliability of detecting melanoma, many automated algorithms and mobile applications have been developed for the same purpose.In this paper, deep learning model designed from scratch as well as the pretrained models Inception v3 and VGG-16 are used with the aim of developing a reliable tool that can be used for melanoma detection by clinicians and individual users. Dermatologists who use dermoscopes can take advantage of the algorithms trained on dermoscopical images and acquire a confirmation about their diagnosis. On the other hand, the models trained on clinical images can be used on mobile applications, since a cell phone camera takes images similar to them.The results using Inception v3 model for dermoscopical images achieved accuracy 91.4%, sensitivity 87.8% and specificity 92.3%. For clinical images, the VGG-16 model achieved accuracy 86.3%, sensitivity 84.5% and specificity 88.8%. The results are compared to those of clinicians, which shows that the algorithms can be used reliably for the detection of melanoma.
176

Assessment of lung damages from CT images using machine learning methods. / Bedömning av lungskador från CT-bilder med maskininlärningsmetoder.

Chometon, Quentin January 2018 (has links)
Lung cancer is the most commonly diagnosed cancer in the world and its finding is mainly incidental. New technologies and more specifically artificial intelligence has lately acquired big interest in the medical field as it can automate or bring new information to the medical staff. Many research have been done on the detection or classification of lung cancer. These works are done on local region of interest but only a few of them have been done looking at a full CT-scan. The aim of this thesis was to assess lung damages from CT images using new machine learning methods. First, single predictors had been learned by a 3D resnet architecture: cancer, emphysema, and opacities. Emphysema was learned by the network reaching an AUC of 0.79 whereas cancer and opacity predictions were not really better than chance AUC = 0.61 and AUC = 0.61. Secondly, a multi-task network was used to predict the factors altogether. A training with no prior knowledge and a transfer learning approach using self-supervision were compared. The transfer learning approach showed similar results in the multi-task approach for emphysema with AUC=0.78 vs 0.60 without pre-training and opacities with an AUC=0.61. Moreover using the pre-training approach enabled the network to reach the same performance as each of single factor predictor but with only one multi-task network which saves a lot of computational time. Finally a risk score can be derived from the training to use this information in a clinical context.
177

Deep Learning for Dietary Assessment: A Study on YOLO Models and the Swedish Plate Model

Chrintz-Gath, Gustav January 2024 (has links)
In recent years, the field of computer vision has seen remarkable advancements, particularly with the rise of deep learning techniques. Object detection, a challenging task in image analysis, has benefited from these developments. This thesis investigates the application of object detection models, specifically You Only Look Once (YOLO), in the context of food recognition and health assessment based on the Swedish plate model. The study aims to assess the effectiveness of YOLO models in predicting the healthiness of food compositions according to the guidelines provided by the Swedish plate model. The research utilizes a custom dataset comprising 3707 images with 42 different food classes. Various preprocessing- and augmentation techniques are applied to enhance dataset quality and model robustness. The performance of the three YOLO models (YOLOv7, YOLOv8, and YOLOv9) are evaluated using precision, recall, mean Average Precision (mAP), and F1 score metrics. Results indicate that YOLOv8 showed higher performance, making it the recommended choice for further implementation in dietary assessment and health promotion initiatives. The study contributes to the understanding of how deep learning models can be leveraged for food recognition and health assessment. Overall, this thesis underscores the potential of deep learning in advancing computational approaches to dietary assessment and promoting healthier eating habits.
178

Low-resource Semantic Role Labeling Through Improved Transfer Learning

Lindbäck, Hannes January 2024 (has links)
For several more complex tasks, such as semantic role labeling (SRL), large annotated datasets are necessary. For smaller and lower-resource languages, these are not readily available. As a way to overcome this data bottleneck, this thesis investigates the possibilities of using transfer learning from a high-resource language to a low-resource language, and then perform zero-shot SRL on the low-resource language. We additionally investigate if the transfer-learning can be improved by freezing the parameters of a layer in the pre-trained model, leveraging the model to instead focus on learning the parameters of the layers necessary for the task. By training models in English and then evaluating on Spanish, Catalan, German and Chinese CoNLL-2009 data, we find that transfer learning zero-shot SRL can be an effective technique, and in certain cases outperform models trained on low amounts of data. We also find that the results improve when freezing parameters of the lower layers of the model, the layers focused on surface tasks, as this allowed the model to improve the layers necessary for SRL.
179

Advanced deep learning based multi-temporal remote sensing image analysis

Saha, Sudipan 29 May 2020 (has links)
Multi-temporal image analysis has been widely used in many applications such as urban monitoring, disaster management, and agriculture. With the development of the remote sensing technology, the new generation remote sensing satellite images with High/ Very High spatial resolution (HR/VHR) are now available. Compared to the traditional low/medium spatial resolution images, the detailed information of ground objects can be clearly analyzed in the HR/VHR images. Classical methods of multi-temporal image analysis deal with the images at pixel level and have worked well on low/medium resolution images. However, they provide sub-optimal results on new generation images due to their limited capability of modeling complex spatial and spectral information in the new generation products. Although significant number of object-based methods have been proposed in the last decade, they depend on suitable segmentation scale for diverse kinds of objects present in each temporal image. Thus their capability to express contextual information is limited. Typical spatial properties of last generation images emphasize the need of having more flexible models for object representation. Another drawback of the traditional methods is the difficulty in transferring knowledge learned from one specific problem to another. In the last few years, an interesting development is observed in the machine learning/computer vision field. Deep learning, especially Convolution Neural Networks (CNNs) have shown excellent capability to capture object level information and in transfer learning. By 2015, deep learning achieved state-of-the-art performance in most computer vision tasks. Inspite of its success in computer vision fields, the application of deep learning in multi-temporal image analysis saw slow progress due to the requirement of large labeled datasets to train deep learning models. However, by the start of this PhD activity, few works in the computer vision literature showed that deep learning possesses capability of transfer learning and training without labeled data. Thus, inspired by the success of deep learning, this thesis focuses on developing deep learning based methods for unsupervised/semi-supervised multi-temporal image analysis. This thesis is aimed towards developing methods that combine the benefits of deep learning with the traditional methods of multi-temporal image analysis. Towards this direction, the thesis first explores the research challenges that incorporates deep learning into the popular unsupervised change detection (CD) method - Change Vector Analysis (CVA) and further investigates the possibility of using deep learning for multi-temporal information extraction. The thesis specifically: i) extends the paradigm of unsupervised CVA to novel Deep CVA (DCVA) by using a pre-trained network as deep feature extractor; ii) extends DCVA by exploiting Generative Adversarial Network (GAN) to remove necessity of having a pre-trained deep network; iii) revisits the problem of semi-supervised CD by exploiting Graph Convolutional Network (GCN) for label propagation from the labeled pixels to the unlabeled ones; and iv) extends the problem statement of semantic segmentation to multi-temporal domain via unsupervised deep clustering. The effectiveness of the proposed novel approaches and related techniques is demonstrated on several experiments involving passive VHR (including Pleiades), passive HR (Sentinel-2), and active VHR (COSMO-SkyMed) datasets. A substantial improvement is observed over the state-of-the-art shallow methods.
180

Improving Semi-Automated Segmentation Using Self-Supervised Learning

Blomlöf, Alexander January 2024 (has links)
DeepPaint is a semi-automated segmentation tool that utilises a U-net architecture to performbinary segmentation. To maximise the model’s performance and minimise user time, it isadvisable to apply Transfer Learning (TL) and reuse a model trained on a similar segmentationtask. However, due to the sensitivity of medical data and the unique properties of certainsegmentation tasks, TL is not feasible for some applications. In such circumstances, SelfSupervised Learning (SSL) emerges as the most viable option to minimise the time spent inDeepPaint by a user. Various pretext tasks, exploring both corruption segmentation and corruption restoration, usingsuperpixels and square patches, were designed and evaluated. With a limited number ofiterations in both the pretext and downstream tasks, significant improvements across fourdifferent datasets were observed. The results reveal that SSL models, particularly those pretrained on corruption segmentation tasks where square patches were corrupted, consistentlyoutperformed models without pre-training, with regards to a cumulative Dice SimilarityCoefficient (DSC). To examine whether a model could learn relevant features from a pretext task, Centred KernelAlignment (CKA) was used to measure the similarity of feature spaces across a model's layersbefore and after fine-tuning on the downstream task. Surprisingly, no significant positivecorrelation between downstream DSC and CKA was observed in the encoder, likely due to thelimited fine-tuning allowed. Furthermore, it was examined whether pre-training on the entiredataset, as opposed to only the training subset, yielded different downstream results. Asexpected, significantly higher DSC in the downstream task is more likely if the model hadaccess to all data during the pretext task. The differences in downstream segmentationperformance between models that accessed different data subsets during pre-training variedacross datasets.

Page generated in 0.0707 seconds