• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 2
  • Tagged with
  • 14
  • 14
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the Relationship between Transit Network Structure and the Network Effect - The Toronto & Melbourne Experience

Woo, Karen Frances 17 February 2010 (has links)
The main objective of this study was to quantitatively explore the connection between network structure and network effect and its impact on transit usage as seen through the real-world experience of the Toronto and Melbourne transit systems. In this study, the comparison of ridership/capita and mode split data showed that Toronto’s TTC has better performance for the annual data of 1999/2001 and 2006. After systematically investigating travel behaviour, mode choice factors and the various evidence of the network effect, it was found that certain socio-economic, demographic, trip and other design factors in combination with the network effect influence the better transit patronage in Toronto over Melbourne. Overall, this comparative study identified differences that are possible explanatory variables for Toronto’s better transit usage as well as areas where these two cities and their transit systems could learn from one another for both short and long term transit planning and design.
2

Investigation of the Relationship between Transit Network Structure and the Network Effect - The Toronto & Melbourne Experience

Woo, Karen Frances 17 February 2010 (has links)
The main objective of this study was to quantitatively explore the connection between network structure and network effect and its impact on transit usage as seen through the real-world experience of the Toronto and Melbourne transit systems. In this study, the comparison of ridership/capita and mode split data showed that Toronto’s TTC has better performance for the annual data of 1999/2001 and 2006. After systematically investigating travel behaviour, mode choice factors and the various evidence of the network effect, it was found that certain socio-economic, demographic, trip and other design factors in combination with the network effect influence the better transit patronage in Toronto over Melbourne. Overall, this comparative study identified differences that are possible explanatory variables for Toronto’s better transit usage as well as areas where these two cities and their transit systems could learn from one another for both short and long term transit planning and design.
3

Optimal transit route network design problem algorithms, implementations, and numerical results /

Fan, Wei, Machemehl, Randy B. January 2004 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Randy B. Machemehl. Vita. Includes bibliographical references. Also available from UMI.
4

A Model to Create Bus Timetables to Attain Maximum Synchronization Considering Waiting Times at Transfer Stops

Eranki, Anitha 17 March 2004 (has links)
Due to the steady increased in public transportation demand, there is a need to provide more desirable and user-friendly transit systems. Typically, the public transportation timetables are modeled as an assignment problem, which often has objectives such as reducing the cost of operation, minimizing waiting time between transfer points or improving the quality of performance. This research considers the problem of developing synchronized timetables for bus transit systems with fixed routes when a waiting time limit exist at each transfer stops, for the passengers making connections. The objective of this research is to have maximum number of simultaneous arrivals. Different to previous studies, a simultaneous arrival' has been defined as an arrival of buses of different routes at a transfer point such that the time between these arrivals do not exceed the passenger waiting time range associated with the transfer stop. In other words, at each node, an upper bound and a lower bound are set for the arrivals of two buses and these buses are run within this allowable window. The heuristic developed has been modeled as a mixed integer linear programming problem and applied to some real life problems to evaluate the outcomes. The total number of synchronizations obtained by the model was compared to the maximum possible simultaneous arrivals at each node. Results show that a larger number of simultaneous arrivals are obtained when the waiting time ranges are relaxed. Finally some important applications of the proposed model compared to the existing models are presented.
5

The Development and Deployment of a GIS tool for Transit Network Design

Simard, Stephanie January 2010 (has links)
Public transportation contributes to sustainable transportation in urban areas. Unfortunately, in some cases public transit systems have been underperforming. Over the years, factors such as urban sprawl and the increase in private vehicle ownership have led to challenges for public transportation providers. The lack of investment in transit infrastructure has resulted in transit agencies being under resourced which further limit the agencies’ ability to respond. Realizing the need to change and move towards a more sustainable and balanced transportation system, governments have begun to invest more and more in transportation infrastructure projects. In order to encourage public transportation, focus has shifted to improving the quality of transit service being provided. There are many ways in which transit improvements can be made. The problem that describes the design of a public transportation network is referred to as the transit network design problem (TNDP). Much of the existing literature that addresses the TNDP describes methods that are rigorous and complex and have limited application in practice. Given the emergence of geographic information systems (GIS), there exists new opportunities to address the TNDP. This thesis presents a customized GIS tool that assists transit network design. The approach utilizes GIS to identify desire lines or major travel demand corridors from which trunk transit routes are proposed and evaluated. The GIS tool is built using VBA scripting in ArcMap 9.3 part of ESRI’s general ArcGIS suite but the underlying GIS functionality needed by the tool is not limited to ESRI software. The tool offers a proven methodology for use within transit network design and evaluation at a level of resource requirement that is consistent with most transit agencies. The tool has been customized to minimize the need for GIS training and to maximize its adaptability for application in multiple cities. The analyst applying the tools must have substantial knowledge of local conditions. The tool is applied to the Regional Municipality of Waterloo, Ontario, Canada, at the TAZ (traffic analysis zone) level using population and employment data. A street network with corresponding posted speeds on each link and the location of signalized intersections were also used in the analysis. The results of the analysis depicted major flows throughout Kitchener, Waterloo and Cambridge. Unique flows from students, major employers and an analysis of average income levels also provide input into the major demand corridors. From these results seven high order transit routes were designed to accommodate the major demand corridors. From the results it was found that GIS can be used to depict major demand corridors and inform transit network design. GIS is an excellent tool that can display complex information and visually identify spatial patterns. Further research includes the development of a model that evaluates network alternatives or the development of quantitative methods by which limits on aggregation can be automated.
6

The Development and Deployment of a GIS tool for Transit Network Design

Simard, Stephanie January 2010 (has links)
Public transportation contributes to sustainable transportation in urban areas. Unfortunately, in some cases public transit systems have been underperforming. Over the years, factors such as urban sprawl and the increase in private vehicle ownership have led to challenges for public transportation providers. The lack of investment in transit infrastructure has resulted in transit agencies being under resourced which further limit the agencies’ ability to respond. Realizing the need to change and move towards a more sustainable and balanced transportation system, governments have begun to invest more and more in transportation infrastructure projects. In order to encourage public transportation, focus has shifted to improving the quality of transit service being provided. There are many ways in which transit improvements can be made. The problem that describes the design of a public transportation network is referred to as the transit network design problem (TNDP). Much of the existing literature that addresses the TNDP describes methods that are rigorous and complex and have limited application in practice. Given the emergence of geographic information systems (GIS), there exists new opportunities to address the TNDP. This thesis presents a customized GIS tool that assists transit network design. The approach utilizes GIS to identify desire lines or major travel demand corridors from which trunk transit routes are proposed and evaluated. The GIS tool is built using VBA scripting in ArcMap 9.3 part of ESRI’s general ArcGIS suite but the underlying GIS functionality needed by the tool is not limited to ESRI software. The tool offers a proven methodology for use within transit network design and evaluation at a level of resource requirement that is consistent with most transit agencies. The tool has been customized to minimize the need for GIS training and to maximize its adaptability for application in multiple cities. The analyst applying the tools must have substantial knowledge of local conditions. The tool is applied to the Regional Municipality of Waterloo, Ontario, Canada, at the TAZ (traffic analysis zone) level using population and employment data. A street network with corresponding posted speeds on each link and the location of signalized intersections were also used in the analysis. The results of the analysis depicted major flows throughout Kitchener, Waterloo and Cambridge. Unique flows from students, major employers and an analysis of average income levels also provide input into the major demand corridors. From these results seven high order transit routes were designed to accommodate the major demand corridors. From the results it was found that GIS can be used to depict major demand corridors and inform transit network design. GIS is an excellent tool that can display complex information and visually identify spatial patterns. Further research includes the development of a model that evaluates network alternatives or the development of quantitative methods by which limits on aggregation can be automated.
7

Simulation-based optimisation of public transport networks

Nnene, Obiora Amamifechukwu 15 October 2020 (has links)
Public transport network design deals with finding the most efficient network solution among a set of alternatives, that best satisfies the often-conflicting objectives of different network stakeholders like passengers and operators. Simulation-based Optimisation (SBO) is a discipline that solves optimisation problems by combining simulation and optimisation models. The former is used to evaluate the alternative solutions, while the latter searches for the optimal solution among them. A SBO model for designing public transport networks is developed in this dissertation. The context of the research is the MyCiTi Bus Rapid Transit (BRT) network in the City of Cape Town, South Africa. A multi-objective optimisation algorithm known as the Non-dominated Sorting Genetic Algorithm (NSGA-II) is integrated with Activity-based Travel Demand Model (ABTDM) known as the Multi-Agent Transport Simulation (MATSim). The steps taken to achieve the research objectives are first to generate a set of feasible network alternatives. This is achieved by manipulating the existing routes of the MyCiTi BRT with a computer based heuristic algorithm. The process is guided by feasibility conditions which guarantee that each network has routes that are acceptable for public transport operations. MATSim is then used to evaluate the generated alternatives, by simulating the daily plans of travellers on each network. A typical daily plan is a sequential ordering of all the trips made by a commuter within a day. Automated Fare Collection (AFC) data from the MyCiTi BRT was used to create this plan. Lastly, the NSGA-II is used to search for an efficient set of network solutions, also known as a Pareto set or a non-dominated set in the context of Multi-objective Optimisation (MOO). In each generation of the optimisation process, MATSim is used to evaluate the current solution. Hence a suitable encoding scheme is defined to enable a smooth iv translation of the solution between the NSGA-II and MATSim. Since the solution of multi-objective optimisation problems is a set of network solutions, further analysis is done to identify the best compromise solution in the Pareto set. Extensive computational testing of the SBO model has been carried out. The tests involve evaluating the computational performance of the model. The first test measures the repeatability of the model's result. The second computational test considers its performance relative to indicators like the hypervolume and spacing indicators as well as an analysis of the model's Pareto front. Lastly, a benchmarking of the model's performance when compared with other optimisation algorithms is carried out. After testing the so-called Simulation-based Transit Network Design Model (SBTNDM), it is then used to design pubic transport networks for the MyCiTi BRT. Two applications are considered for the model. The first application deals with the public transport performance of the network solutions in the Pareto front obtained from the SBTNDM. In this case study, different transport network indicators are used to measure how each solution performs. In the second scenario, network design is done for the 85th percentile of travel demand on the MyCiTi network over 12 months. The results show that the model can design robust transit networks. The use of simulation as the agency of optimisation of public transport networks represents the main innovation of the work. The approach has not been used for public transport network design to date. The specific contribution of this work is in the improved modelling of public transport user behaviour with Agent-based Simulation (ABS) within a Transit Network Design (TND) framework. This is different from the conventional approaches used in the literature, where static trip-based travel demand models like the four-step model have mostly been used. Another contribution of the work is the development of a robust technique that facilitates the simultaneous optimisation of network routes and their operational frequencies. Future endeavours will focus on extending the network design model to a multi-modal context.
8

The Measurement and Evaluation of Urban Transit Systems: The Case of Bus Routes

Sheth, Chintan H. 16 October 2003 (has links)
The issues of performance measurement and efficiency analyses for transit industries have been gaining significance due to severe operating conditions and financial constraints in which these transit agencies provide service. In this research, we present an approach to measure the performance of Urban Transit Networks, specifically, bus routes that comprise the network. We propose a math programming model that evaluates the efficiencies of bus routes taking into consideration, the service providers, the users and the societal perspectives. This model is based on Data Envelopment Analysis (DEA) methodology and derives from Network Theory, Network Modeling in DEA, Goal Programming & Goal-DEA and 'Environmental' Variables. This approach enables the decision maker to determine the performance of its units of operations ('bus routes' in our case), optimally allocate scarce resources and achieve target levels for 'externality' variables for these bus routes and for the whole network. We further recommend modifications to the model, for adaptation to other modes of transportation as well as extend its applicability to other applications/scenarios. / Master of Science
9

Projeto de redes otimizadas de transporte público por ônibus utilizando algoritmo genético. / Bus transit network design using genetic algorithm.

Arbex, Renato Oliveira 17 November 2014 (has links)
Esta dissertação trata do problema do projeto de redes de transporte público por ônibus, que consiste em estabelecer as linhas de ônibus a serem operadas e seus respectivos trajetos e frequências. Busca-se determinar uma rede de tal forma a minimizar custos de operadores e usuários, constituindo um problema multiobjetivo. O custo dos operadores é representado tanto pela frota como pela quilometragem total necessária para atender às frequências exigidas; já o custo dos usuários é representado pela soma dos tempos de espera, tempos de viagem dentro do veículo e eventuais penalidades de transferência. Dado tratar-se de um problema multiobjetivo, de natureza combinatória e complexo, é proposto um método de solução baseado na metaheurística Algoritmo Genético. O mesmo baseia-se na construção inicial de um banco de rotas viáveis, e cada solução proposta é formada selecionando-se um subconjunto de rotas deste banco para formar a rede. São aplicadas estratégias de busca por soluções viáveis nos operadores do Algoritmo Genético, devido à grande proporção de indivíduos inviáveis. O modelo é avaliado através de uma instância de teste da literatura e os resultados são comparados com os já obtidos em trabalhos anteriores. A melhor solução encontrada através do método descrito deste trabalho é superior às já reportadas na literatura. Uma análise de sensibilidade foi realizada para avaliar a influência de parâmetros de entrada do modelo na qualidade das soluções. Um Sistema de Visualização foi desenvolvido para representar graficamente as linhas de ônibus e demais variáveis das soluções. Sugere-se, ao final do trabalho, um conjunto de pesquisas futuras associadas à melhoria do modelo. / This dissertation addresses the public transport network design problem, which comprises determining the bus routes, their associated itineraries and frequencies. The network is designed as to minimize operators and users costs, creating a multiobjective problem. Operators costs are represented by the total fleet and mileage necessary to address required frequencies while user costs are represented by the sum of waiting times, in-vehicle travel times and possible transfer penalties. Given the complexity of this combinatorial and multiobjective problem, a solution method, based on the genetic algorithm metaheuristic, is proposed. Initially a database of feasible routes is built, and each proposed solution is formed by selecting a subset of routes from the database to form the network. Feasibility search strategies are applied inside genetic algorithms operators to make up for the large number of unfeasible individuals. The model is evaluated with a small network and the results are compared with those obtained in previous studies. The best solution attained with the present method is superior to previously published results. A sensitivity analysis was conducted to evaluate the influence of different model input parameters on solution quality. A Visualization System was developed to graphically represent the solutions bus lines and other variables. A set of future research ideas, related to the model improvement, are presented at the end of this study.
10

[en] IMPROVEMENT IN HEURISTIC METHOD FOR THE SOLUTION OF THE URBAN PUBLIC TRANSPORT NETWORK DESIGN PROBLEM / [pt] MELHORIAS EM UM MÉTODO HEURÍSTICO PARA A SOLUÇÃO DO PROBLEMA DE DESENHO DE REDE DE TRANSPORTE PÚBLICO URBANO

LORENA HERNANDEZ MASTRAPA 05 October 2017 (has links)
[pt] Atualmente mais da metade da população mundial mora em cidades. O deslocamento na região urbana, mediante a utilização de transporte público se dificulta devido ao planejamento deficiente das rotas e redes de transporte, longos tempos de viagem, aumento do custo das passagens, dos tempos de espera, etc. Como consequência, a busca de operações mais eficientes no sistema de transporte público urbano tem aumentado visando atender as necessidades de transporte de forma mais sustentável. Após a revisão da literatura relacionada ao problema de desenho de rede de transporte público urbano, foi escolhido o método proposto por Aquino, (1980), aplicável para redes de ônibus urbanos. Por médio da modernização do programa do método escolhido e as melhorias nele, o número de rotas que define a rede conectada diminuiu. O número de transbordos na rede foi minimizado até zera-lo com um menor conjunto de rotas. Análise de indicadores e de rentabilidade das rotas que minimizam o número de transbordo na rede, permite ao planejador ter uma visão geral do comportamento dessas rotas possibilitando tomar decisões mantendo os requerimentos iniciais e o objetivo de estudo. O programa do método desenvolvido, adaptado a uma linguagem moderna, Cmais mais, oferece, tanto ao meio acadêmico quanto ao profissional, uma ferramenta de fácil aplicação para dar solução ao Problema de Desenho de Rede de Transporte Público Urbano. Contribuindo potencialmente ao incremento da eficiência do processo de planejamento e, portanto, à redução de não conformidades do serviço de transporte resultando em economia dos custos para as empresas prestadoras deste serviço. / [en] Nowadays, more than half of the world s population lives in cities. Displacement in the urban area through the use of public transportation is hampered by poor planning of transport routes and networks, long travel times, increased ticket costs and waiting times, etc. As a consequence, the search for more efficient operations in the urban public transport system has increased in order to meet the transport needs in a more sustainable way. After the literature review related to the urban public transport network design problem, the method proposed by Aquino (1980), applicable to urban bus networks, was chosen. By means of the program s modernization of the chosen method and the improvements in it, the number of routes defining the connected network has decreased. The overflow number on the network has been minimized to zero with a smaller set of routes. Analysis of indicators and profitability of the routes that minimize the number of transfer in the network, allows the planner to have an overview of the behavior of these routes allowing to make decisions keeping the initial requirements and the objective of study. The developed method program, adapted to a modern language, C plus plus, offers both an academic and a professional environment an easy application tool to solve the Urban Public Transport Network Design Problem. Potentially contributing to the increase of the efficiency of the planning process and, therefore, to the reduction of nonconformities of the transport service, resulting in cost savings for the companies that provide this service.

Page generated in 0.0555 seconds