Spelling suggestions: "subject:"atransmission electron microscopy."" "subject:"cotransmission electron microscopy.""
201 |
In situ transmission electron microscopy of diffusion driven solid-solid stuctural transitionsTerker, Markus 07 September 2022 (has links)
In dieser Arbeit wurde in situ TEM genutzt, um Phasendiffusionsprozesse in Echtzeit mit hoher räumlicher Auflösung während struktureller Übergangsphänomene in verschiedenen Systemen zu untersuchen, die durch eine zunehmende Anzahl von Einflussparametern wie Kristallorientierung oder Dehnung charakterisiert sind.
Zur Entwicklung und Erprobung der Methode wurde die Interdiffusion an planaren Grenzflächen zwischen (Al,Ga)As-Schichten unterschiedlicher Zusammensetzung während des Glühens untersucht. Ein neuer hybrider Probenpräparationsansatz wurde verwendet, um die Interdiffusion in der Heterostruktur bei Temperaturen bis zu 800 Grad Celsius mit der in situ Weitwinkel-Dunkelfeld-Rastertransmissionselektronenmikroskopie (HAADF STEM) zu untersuchen. Die beobachtete Grenzflächenverbreiterung zeigte eine starke Abhängigkeit der Diffusionskoeffizienten von der lokalen Zusammensetzung von Al und Ga. Als nächstes wurde HAADF STEM verwendet, um die Phasenseparationsbildung von Bi-reichen Clustern in einem Ga(Sb,Bi)-Film direkt zu beobachten. Die Ergebnisse zeigten, dass sie sich durch spinodale Zersetzung bilden. Der komplexeste strukturelle Übergang, der in dieser Arbeit untersucht wurde, ist die Festphasenepitaxie (SPE) von Ge auf Fe3Si, die zur Bildung einer neuartigen epitaktisch stabilisierten FeGe2-Phase führt. Mittels in situ hochauflösendem (HR)TEM konnten die verschiedenen Schritte dieses Phasenübergangs alle in Echtzeit beobachtet werden. Die Ergebnisse zeigten, dass eine intermediäre CsCl-ähnliche Phase von FeGe2 zunächst durch einen diffusionsbegrenzten Prozess Schicht für Schicht von der Ge/Fe3Si-Grenzfläche aus wächst. Nach einer bestimmten Filmdicke wandelt eine zweite Umwandlung den Film in eine tetragonale Schichtstruktur von FeGe2 um. Dieser Prozess beginnt ebenfalls an der Grenzfläche zum FeGe2 und kann auf Gitterdehnung zurückgeführt werden. / In this work, in situ TEM was utilized to investigate phase diffusional processes in real time with high spatial resolution during structural transition phenomena in various systems which are characterized by an increasing number of impact parameters such as crystal orientation or strain.
In order to develop and evaluate the experimental method interdiffusion at planar interfaces between (Al,Ga)As layers of different composition during annealing was investigated. A new hybrid sample preparation approach was used to investigate the interdiffusion in the heterostructure at temperatures up to 800 _C with in situ high angle annular dark field scanning transmission electron microscopy (HAADF STEM). The observed interface broadening revealed a strong dependence of the diffusion coefficients on the local composition of Al and Ga. Next in situ HAADF STEM was used to directly observe the phase separation formation of Bi-rich clusters in a Ga(Sb,Bi) film. The results showed that they form by spinodal decomposition. The most complex structural transition investigated in this work is the solid phase epitaxy (SPE) of Ge on Fe3Si resulting in the formation of a novel epitaxially stabilized FeGe2 phase. By using in situ high resolution (HR)TEM the different steps of this phase transition could all be observed in real time. The results showed that an intermediate CsCl-like phase of FeGe2 grows first by a diffusion limited process layer-by-layer from the Ge/Fe3Si interface. After a certain film thickness, a second transformation transforms the film into a tetragonal layered structure of FeGe2. This process also initiates at the interface to the FeGe2 and can be attributed to strain.
|
202 |
Transmission electron microscopic investigation of the growth of group III sesquioxides Ga2O3Schewski, Robert 11 March 2019 (has links)
In dieser Arbeit werden die grundlegenden Wachstumsprozesse von Ga2O3 , mittels Transmissionselektronenmikroskopie analysiert. Dazu gehört die Untersuchung des heteroepitaktischen Wachstums von Galliumoxidschichten welche mittels Molekularstrahlepitaxie (molekular beam epitaxy MBE), der gepulsten Laser Abscheidung (pulsed laser deposition (PLD)) und der metallorganischen Gasphasenepitaxie (metalorganic vapor phase epitaxy (MOVPE)) auf (0001) orientierte Saphir Substraten abgeschieden wurden. Heteroepitaktisches Wachstum von Ga2O3 auf Saphir (0001) erfolgt bis zu einer Dicke von 3 Monolagen pseudomorph als α-Ga2O3 welches durch die Gitterfehlpassung zwischen Galliumoxid und dem Saphire Substrat induzierte Gitterverspannung stabilisiert wir. Weiterhin, im Fokus der Arbeit stehend, wird das homoepitaktische Wachstum von Galliumoxid auf (100) orientierten Galliumoxidsubstraten untersucht. Neben den Besonderheiten des Schichtwachstums, die sich aus den eingesetzten metallorganischen Präkursoren und Sauerstoffquellen ergeben, wird die Schichtstruktur in Abhängigkeit der typischen Wachstumsparameter (Wachstumstemperatur, Wachstumsrate, Kammerdruck und Fehlorientierung des Substrates) analysiert. Dabei wird gezeigt das homoepitaktischen Wachstum auf (100) orientiertem, β-Ga2O3, mittels MOVPE, die kristalline Perfektion der gewachsenen Schichten stark von den verwendeten Präkursoren (Trimethylgallium (TMGa) und Triethylgallium (TEGa) als metallorganische Ausgangsstoffe und H2 O oder purer Sauerstoff als Oxidant) und den chemischen Prozessen an der Oberfläche bestimmt wird. Des Weiteren wird die Entstehung von Zwillingslammelen in abhähngigkeit der Fehlorientierung untersucht. Durch die Einführung von vorbestimmten Fehlorientierungswinkeln der Substrate ist es möglich das Entstehen der Zwillingslamellen zu verhindern, und ein Stufenflusswachstum zu generieren. Durch die Anwendung eines Ratengleichungsansatzes ist es möglich die experimentell beobachteten Dichten an Zwillingslamellen zu erklären und einen Diffusionskoeffizienten zu bestimmen.
(i) Heteroepitaktisches Wachstum von Ga2O3 auf Saphir (0001) erfolgt bis zu einer Dicke von 3 Monolagen pseudomorph als alpha-Ga2O3. Oberhalb dieser Schicht wächst relaxiertes ß-Ga2O3 in Form von 3 Rotationsdomänen auf. Die Stabilisation der dünnen alpha-Ga2O3 Schicht wird, durch die Gitterfehlpassung zwischen Galliumoxid und dem Saphire Substrat induzierte Gitterverspannung bewirkt.
(ii) Beim homoepitaktischen Wachstum auf (100) orientiertem ß-Ga2O3 mittels MOVPE wird die kristalline Perfektion der gewachsenen Schichten stark von den verwendeten Präkursoren (Trimethylgallium (TMGa) und Triethylgallium (TEGa) als metallorganische Ausgangsstoffe und H2O oder purer Sauerstoff als Oxidant) und den chemischen Prozessen an der Oberfläche bestimmt. Während beim Wachstum mittels TMGa und O2 vorwiegend polykristalline Schichten entstehen, ergeben sich beim Wachstum mittels TMGa und H2O sowie TEGa und O2 geschlossenen epitaktische Schichten. Dieser signifikante Unterschiede lässt sich durch die unterschiedlichen Reaktionswege der Ausgangsstoffe sowie durch die katalytische Wirkung der (100) Flächen des ß-Ga2O3 erklären.
(iii) Die Perfektion, mittels MOVPE gewachsener, homoepitaktischer Schichten, auf (100) orientierten Substraten, ist stark von der Fehlorientierung des Substrates bestimmt. Schichten die auf Substraten mit geringen Fehlorientierungen abgeschieden werden (< 2° bei Wachstumstemperaturen < 850°C) sind durch eine hohe Dichte an Zwillingslamellen gekennzeichnet. Die Entstehung der Zwillingslamellen ist ein Resultat eines Doppelpositionierungsprozesses der Atome auf der Oberfläche der Wachstumsebene. Durch die Einführung von vorbestimmten Fehlorientierungswinkeln der Substrate ist es möglich das Entstehen der Zwillingslamellen zu verhindern, und ein Stufenflusswachstum zu generieren. Durch die Anwendung eines Ratengleichungsansatzes, welcher die konkurrierenden Prozesse des Einbaus von Atomen in Oberflächenstufen sowie der Nukleation und des Wachstum von zweidimensionalen Inseln beschreibt, ist es möglich die experimentell beobachteten Dichten an Zwillingslamellen zu erklären und einen Diffusionskoeffizienten zu bestimmen, Dieser ist um zwei Größenordnungen geringer als bei klassischen Halbleitern, wie z. B. GaAs.
In dieser Arbeit werden die grundlegenden Wachstumsprozesse von Ga2O3 , mittels Transmissionselektronenmikroskopie analysiert. Dazu gehört die Untersuchung des heteroepitaktischen Wachstums von Galliumoxidschichten welche mittels Molekularstrahlepitaxie (molekular beam epitaxy MBE), der gepulsten Laser Abscheidung (pulsed laser deposition (PLD)) und der metallorganischen Gasphasenepitaxie (metalorganic vapor phase epitaxy (MOVPE)) auf (0001) orientierte Saphir Substraten abgeschieden wurden. Heteroepitaktisches Wachstum von Ga2O3 auf Saphir (0001) erfolgt bis zu einer Dicke von 3 Monolagen pseudomorph als α-Ga2O3 welches durch die Gitterfehlpassung zwischen Galliumoxid und dem Saphire Substrat induzierte Gitterverspannung stabilisiert wir. Weiterhin, im Fokus der Arbeit stehend, wird das homoepitaktische Wachstum von Galliumoxid auf (100) orientierten Galliumoxidsubstraten untersucht. Neben den Besonderheiten des Schichtwachstums, die sich aus den eingesetzten metallorganischen Präkursoren und Sauerstoffquellen ergeben, wird die Schichtstruktur in Abhängigkeit der typischen Wachstumsparameter (Wachstumstemperatur, Wachstumsrate, Kammerdruck und Fehlorientierung des Substrates) analysiert. Dabei wird gezeigt das homoepitaktischen Wachstum auf (100) orientiertem, β-Ga2O3, mittels MOVPE, die kristalline Perfektion der gewachsenen Schichten stark von den verwendeten Präkursoren (Trimethylgallium (TMGa) und Triethylgallium (TEGa) als metallorganische Ausgangsstoffe und H2 O oder purer Sauerstoff als Oxidant) und den chemischen Prozessen an der Oberfläche bestimmt wird. Des Weiteren wird die Entstehung von Zwillingslammelen in abhähngigkeit der Fehlorientierung untersucht. Durch die Einführung von vorbestimmten Fehlorientierungswinkeln der Substrate ist es möglich das Entstehen der Zwillingslamellen zu verhindern, und ein Stufenflusswachstum zu generieren. Durch die Anwendung eines Ratengleichungsansatzes ist es möglich die experimentell beobachteten Dichten an Zwillingslamellen zu erklären und einen Diffusionskoeffizienten zu bestimmen. Des Weiteren wird das Wachstum im Mischsystem (InxGa1-x)2O3 untersucht und gezeigt das Indium als grenzflächenaktive Substanz wirken kann. / In this work we study the basic growth processes of epitaxial Ga2O3 films, by means of transmission electron microscopy. We investigate the heteroepitaxial growth of thin layers Ga2O3 on the (0001) plane of sapphire grown by molecular beam epitaxy (MBE), pulsed laser deposition (PLD) and metal organic vapor phase epitaxy (MOVPE). Furthermore, we will focus on the homoepitaxial growth on the (100) plane by MOVPE. Beside the peculiarities of the layer growth dependence on different metal organic precursors and oxygen sources, we investigate the influence of typical growth parameters (i.e. growth temperature, growth-rate, chamber pressure and miscut angle of the substrate) on the layer morphology. Incase of heteroepitaxial growth of β-Ga2O3 on (0001) plane of sapphire, independent of the growth method, the formation of a 3 monolayer thick α-Ga2O3 layer is observed, which is stabilized through strain, as a result of the lattice mismatch between sapphire and α-Ga2O3. In case of homoepitaxial growth by MOVPE on (100) oriented β-Ga2O3, the crystalline quality of the grown layer strongly depends on the used precursor (tri-methyl-gallium (TMGa) or tri-ethyl-gallium (TEGa) as metal precursor and H2O or pure oxygen as oxidant) and the chemical processes on the surface, respectively. Further on is the crystalline perfection of homoepitaxial layers grown by MOVPE on (100) oriented β-Ga2O3 substrates strongly dependent on the miscut-angle of the substrates. Layer grown on substrate with a small miscut-angle (< 2°) show high amount of twin lamella. These twin lamella are a result of a possible double positioning mechanism of ad-atoms on the growth surface. By introducing appropriate miscut-angles of the substrate it is possible to suppress the formation of these twin lamellae, and enable step flow growth. By applying a rate equation approach, describing the competing processes of incorporation of ad-atoms at kink sites or nucleation and growth of two dimensional island, it is possible to quantitatively reproduce the experimentally observed twin lamella densities and to determine a surface diffusion coefficient of the ad-atoms. Furthermore, in case of the alloy system (InxGa1-x)2O3, it is shown that indium can act as an surfactant, by increasing the surface diffusion.
|
203 |
Synthesis and characterisation of large area grapheneRobertson, Alexander William January 2013 (has links)
The pursuit of high quality, large area graphene has been a major research focus of contemporary materials science research, in the wake of the discovery of the multitude of exceptional properties exhibited by the material. The DPhil project was undertaken with the objective of developing an understanding of the growth of large graphene sheets by chemical vapour deposition (CVD), and also in the subsequent characterisation of their material properties. By conducting atmospheric pressure CVD growth at high methane flow rates, it was found that few-layered graphene (FLG) could be deposited on a copper catalyst. It is demonstrated that the self-limiting property of a copper catalyst is not universal to all deposition conditions, and shown that FLG grows in a terrace-like configuration. In depth transmission electron microscopy (TEM) studies were carried out on FLG. By selective image reconstruction from the inverse power spectrum of the TEM images, it was possible to elucidate the inter-grain connectivity of few-layer graphenes. It was determined that there were two possible inter-grain configurations possible; specifically an overlap of graphene layers or a discrete atomic bonding edge. The perturbation of the few-layer structure when subject to an out of plane distortion was found to incur a shift in the conventional AB-Bernal stacking of FLG. By utilising the aberration corrected TEM (AC-TEM) at Oxford it was possible to resolve atomic detail in CVD synthesised monolayer films, including atomic bond rotations and vacancies. The use of a high current density at low accelerating voltage (80 kV) was demonstrated to allow for the controlled defect creation in graphene sheets. This permitted the creation of monovacancies and iron doped vacancy complexes suitable for further study. The behaviour of these two defect types under electron beam irradiation was subsequently studied.
|
204 |
Metal oxide porous single crystals and other nanomaterials : an HRTEM studyDickinson, Calum January 2007 (has links)
Three-dimensional porous single crystals (PSCs) are a recent development in the growing world of mesoporous material. The mesoporosity allows for the material to retain their nanoproperties whilst being bulk in size. The current work concentrates on chromium oxide and cobalt oxide PSCs formed in the templates SBA-15 and KIT-6. HRTEM is the main technique used in this investigation, looking at the morphology and single crystallinity of these materials. A growth mechanism for the PSC material is proposed based on HRTEM observations. XRD studies revealed that the confinement effect, caused by the mesopores, reduces the temperature for both cobalt and chromium oxide crystallisation, as well as a different intermediate route from the metal nitrates. The properties of chromium oxide PSC are also investigated magnetically and catalytically. Some metal oxides in different templates are also presented, despite no PSC forming. HRTEM work on other nanomaterials, based on collaboration, is also presented.
|
205 |
Reduction of ferric and ferrous compounds in the presence of graphite using mechanical alloyingMoloto, Ledwaba Harry 05 1900 (has links)
M.Tech. (Department of Chemistry, Faculty of Applied Sciences), Vaal University of Technology / Many oxidic iron compounds—iron oxides; oxy-hydroxides and hydroxides—not only play an important role in a variety of disciplines but also serve as a model system of reduction and catalytic reactions. There are more than 16 identifiable oxidic iron compounds. The reduction of these compounds has been investigated for centuries. Despite this, the reduction behavior of the oxides is not fully understood as yet.
To date the reduction mechanism is still plagued with uncertainties and conflicting theories, partly due to the complex nature of these oxides and intermediates formed during the reduction. Thermodynamically, the reduction of iron oxide occurs in steps. For example, during the reduction of hematite (a-Fe2O3) magnetite (Fe3O4) is first formed followed by non-stoichiometric wüstite (Fe1-yO) and lastly metallic iron (a-Fe). The rate of transformation depends on the reduction conditions. Further, this reduction is accompanied by changes in the crystal structure.
The reduction behavior of iron oxides using graphite under ball-milling conditions was investigated using Planetary mono mill (Fritsch Pulverisette 6), Mössbauer Spectroscopy (MS), X-ray Diffraction (XRD), Scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM).
It was found that hematite transformed into magnetite, Wüstite and or cementite depending on the milling conditions. The study shows that by increasing the milling time, the rotational speed and / or the ball to powder ratio, the extent of the conversion of hematite to its reduction products increased. Further investigations are required for the elucidation of the reduction mechanism. The reaction og magnetite and graphite at different milling conditions lead to the formation of Fe2+ and Fe3+ species, the former increasing at the expense of Fe3O4. Fe3O4 completely disappeared after a BPR of 50:1 and beyond. The Fe2+ species was confirmed to be due to FeO using XRD analysis.
HRSEM images Fe2O3 using scanning electron microscopy prior to and after milling at different times showed significant changes while the milling period was increased, HRSEM images showed that the once well defined hematite particles took ill-defined shapes and also became smaller in size, which was a results of the milling action that induced reaction between the two powders to form magnetite. EDX spectra at different milling times also confirmed formation of magnetite. EDX elemental analysis and quantification confirmed the elemental composition of starting material consisting mainly of iron.
Similarly, HRSEM images of Fe3O4 using Scanning electron microscopy (SEM) prior to and after milling at different BPR showed significant changes when the milling period was increased. EDX spectra at different milling times also confirmed formation of partial FeO and EDX elemental analysis and quantification confirmed the elemental composition of starting material consisting mainly of iron than Fe2O3.
TEM images of both Fe2O3 and Fe3O4 particles at different milling conditions displayed observable particle damages as a function of milling period.The once well - defined particles (Fe2O3 and Fe3O4 ) successively took ill – defined shapes, possibly accompanied by crystallite size reduction.
MAS showed that the reactive milling of α- Fe2O3 and C resulted in reduction to Fe3O4 , FeO and or cementite depending on the milling conditions etc Time, milling speed and BPR variation which influenced the reduction. The study shows that by increasing the milling time, the rotational speed and / or the ball to powder ratio, the extent of the conversion of hematite to its reduction products increased.
XRD study investigations even though were unable to detect spm species (Fe2+ and Fe3+ ) which has smaller crystallites below detection limits ,the variation in time showed an increment in the magnetite peaks accompanied by recession of hematite and graphite peaks as the milling time was increased which relates to the MAS observation.XRD also corroborated the data obtained from MAS that showed that the main constituent was magnetite and further evidence in support of the reduction of hematite to magnetite under reactive milling was obtained using XRD .
Overall, the work demonstrated selective reduction of Fe2O3 to Fe3O4 and Fe3O4 to FeO by fine tuning the milling conditions. It is envisaged that the reduction of FeO to Fe and possible carburization to FexC could also be achieved.
|
206 |
The molecular precursor approach to control the morphology of Co₃O₄ on support materialsde Jongh, Leigh-Anne January 2011 (has links)
In this project, the TMP method was employed to produce “active sites.” These active sites are for influencing and controlling the Co₃O₄ growth. One of the aims was to investigate what effect the grafting of the molecular precursor has on the nature and distribution of active sites on the various support materials. The second aim was to investigate the effect an increase in molecular precursor loading, in various impregnation steps, has on the nature and distribution of the active sites. The third aim was to investigate the effect of the steric constraints of ligand groups, by changing the molecular precursor, on the nature and distribution of active sites. The fourth aim was to use the different aspects discussed above and apply them to investigate what effect the above-mentioned modifications have on Co₃O₄ morphology. While another aim was to investigated what effect varying the quantity of Co(NO₃)₂•6H₂O has on Co₃O₄ morphology. Lastly, we investigated what effect varying the impregnation procedure and calcination temperature have on the Co₃O₄ morphology. The effect the support has on the phase of titanium molecular precursor was investigated using molecular precursor, ⁱPrOTi[OSi(O[superscript(t)]Bu₃)]₃. The supports used were Silica 922, NanoDur, Aerosil 200, Stöber spherical silica, SBA-15, mod MCM-41 and sMCM-41. The molecular precursor ⁱPrOTi[OSi(O[superscript(t)]Bu₃)]₃ was revealed to be in the orthorhombic TiO₂ with space group P(cab), normal brookite lattice, on Silica 922 after calcination but only an isolated area displaying this morphology. Generally we do not observe any TiO₂ on the support, which indicates that we have produce site-isolated sites, suggesting the TMP method has been successful on all of the various supports. The emphasis is placed on the effect of this molecular precursor and the respective support has on the Co₃O₄ morphology in Chapter 3. In this Chapter, a unique morphology was observed on Silica 922 which showed Co₃O₄ nanorods of cubic Co₃O₄ in the space group Fd-3m. Silica 922 was used for the remainder of the thesis to investigate the effect the quantity of molecular precursor has on the nature of active sites and Co₃O₄ morphology in Chapter 4. This support was also used to investigate the effect the amount of Co(NO₃)₂•6H₂O has on Co₃O₄ morphology in Chapter 5. This support was lastly used to investigate the steric constraints of the ligand groups, Ti[OSi(O[superscript(t)]Bu)₃]₄ (TiSi4), ⁱPrOTi[OSi(O[superscript(t)]Bu)₃]₃ (TiSi3), (OtBu)₃TiOSi(O[superscript(t)]Bu)₃ (TiSi) and the least sterically constrained Ti(OⁱPr)₄ has on the loading of precursor and Co₃O₄ morphology in Chapter 6.
|
207 |
Advanced electron microscopy of wide band-gap semiconductor materialsFay, Michael W. January 2000 (has links)
No description available.
|
208 |
Two-dimensional dopant profiling for shallow junctions by TEM and AFMYoo, Kyung-Dong January 2000 (has links)
No description available.
|
209 |
Contribution à l’étude de la précipitation des phases intermétalliques dans l’alliage 718 / Contribution to the study of precipitation of intermetallic phases in 718 alloyNiang, Aliou 30 April 2010 (has links)
De nombreux alliages de structure doivent leurs propriétés mécaniques à la présence de précipités inter ou intragranulaires. Ainsi les superalliages à base nickel, de matrice austénique γ, sont souvent renforcés par des précipités de phases intermétalliques ordonnées. Au sein de l’alliage Inconel 718, outre la phase γ’ de structure L12 (cubique simple), on trouve des précipités de Ni3Nb sous la forme métastable γ" (D022 - tétragonal centré) ou sous la forme stable δ (D0a - orthorhombique). Le rôle des précipités γ’, γ" et δ sur les propriétés macroscopiques de l'alliage est connu et largement utilisé en contexte industriel. Cependant les mécanismes de précipitation et de transformation de ces précipités ne sont toujours pas complètement élucidés, ce qui a motivé ce travail. La microstructure de l’alliage a été caractérisée par microscopie optique (MO) et électronique (à balayage et en transmission ; MEB et MET) dans l’état de livraison et après des traitements thermiques isothermes et anisothermes. Les essais d’analyse thermique différentielle (ATD) nous ont permis de préciser les domaines de température de précipitation et de dissolution des différentes phases présentes (γ’, γ" et δ). Différents états de précipitation ont été obtenus à l’aide de traitements thermiques isothermes basés sur les diagrammes temps-températuretransformation (T.T.T.) disponibles dans la littérature. Les observations en MET « à haute résolution » des précipités des phases δ et γ’’ ont permis de caractériser certains des défauts structuraux présents dans ces précipités. Nous montrons ainsi que les défauts d’empilement au sein de la phase γ’’ peuvent servir de germes pour la précipitation de . Alors que la structure des interfaces δ/γ ainsi que les défauts d’orientation au sein des lamelles de δ suggèrent que la croissance de la phase δ a lieu directement à partir de la matrice . / Many structural alloys are strengthened by the presence of precipitates in the grains or at grain boundaries. Nickel based superalloys often present an austenitic γ matrix in which ordered intermetallic phases precipitate. In the alloy Inconel 718, one can find γ’ L12 cubic ordered precipitates together with the compound Ni3Nb in its metastable form γ" (D022 - tetragonal) or the stable phase δ (D0a - orthorhombic). The incidence of those precipitates on macroscopic properties of the alloy 718 is well known and widely used in industrial applications. However the mechanisms responsible for the precipitation and transformation of these phases are not fully understood, which motivated the present study. The alloy microstructure has been observed by optical microscopy (OM) and electron microscopy (scanning and transmission, SEM and TEM) in the as received state as well as after heat treatment (isothermal and anisothermal). Differential thermal analysis (DTA) was used to determine the precipitation and dissolution temperatures of the phases γ', γ" and δ. Various precipitation microstructures were obtained by heat treatments based on available TTT diagrams. Some of the structural defects present in γ" and δ precipitates have been characterised by lattice imaging TEM observations. It is shown that stacking faults in γ’’ phase can act as a seed for the germination of . The structure of the δ/γ interface and the orientation defects in δ lamellae suggest that the growth of δ phase occurs directly from the matrix (and not by transformation of the γ’’ phase).
|
210 |
Structural studies of HDL and applications of EM on membrane proteinsZhu, Lin January 2017 (has links)
A large number of proteins interact with biological membranes, either integrated in the membrane (PepTSo2), embedded on a membrane surface (5-lipoxygenase) or encircling a cutout of lipid bilayer (apolipoprotein1 (apoA-I). They function as transporters, receptors or biocatalysts in cellular processes like inflammation or cholesterol transport which are touched upon here. Malfunction of specific membrane proteins are the cause for several diseases or disorders. Knowledge of protein structure supports understanding of its mechanism of function. Here, transmission electron microscopy (TEM) was used for structure determination. To obtain structure information to high resolution for membrane proteins, normally surrounded by lipids, demands specific methods and materials for stabilization. Stabilized in detergent the structure of the bacterial transporter PepTSo2 was shown to form a tetramer even bound to substrate. However, with a protein based stabilizer, Salipro, the structure of PepTSo2 could be determined to high resolution. High density lipoprotein (HDL) in blood plasma, involved in the removal of cholesterol from peripheral tissues, have a central role in cardiovascular function, metabolic syndrome and diabetes. The HDL-particle is composed of two copies of ApoA1 and around hundred lipid molecules. From TEM data, for the first time the clearly discoidal shape could be shown by 3-dimendional reconstructions. These were used for modelling the ApoA1 protein dimer by a "biased fitting" procedure. The results indicate how ApoA1 folds around a lipid bilayer in a disc-shaped structure. Modified HDL called nanodiscs were here used to show the Ca2+ dependent binding of 5-lipoxygenase on the nanodisc bilayer and thereby increased production of the inflammatory mediator leukotrieneA4. Dimerization of 5-lipoxygenase inactivates these functions. / <p>QC 20170323</p>
|
Page generated in 0.1822 seconds