Spelling suggestions: "subject:"cotransport duu cholestérol"" "subject:"cotransport dud cholestérol""
1 |
Rôle de la péroxydation lipidique dans le développement de l'athéroscléroseMarcil, Valérie January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
2 |
Rôle de la péroxydation lipidique dans le développement de l'athéroscléroseMarcil, Valérie January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
3 |
Rôle de l’autophagie et du métabolisme nucléotidique extracellulaire dans la régulation de la voie ecto-F1-ATPase d’endocytose des HDL / Autophagy and extracellular nucleotides metabolism in the regulation of ecto-F1-ATPase-dependant HDL endocytosisCardouat, Guillaume 01 June 2017 (has links)
L'effet protecteur des HDL sur les pathologies cardio-vasculaires est principalement attribué à leur rôle central dans le Transport Retour du Cholestérol (TRC). Ce processus assure l'efflux du cholestérol excédentaire des cellules périphériques vers le foie, au niveau duquel il est éliminé dans les sécrétions biliaires. Dans ce contexte, notre équipe a identifié à la surface des cellules hépatiques la présence d’un complexe enzymatique, très proche de l’ATP synthase mitochondriale, comme étant un récepteur de haute affinité pour l’apoA-I (protéine majoritaire des HDL). Cette ATP synthase de surface, également appelée ecto-F1-ATPase, joue un rôle clé dans l’endocytose hépatique des HDL. En effet, la liaison de l’apoA-I stimule l’activité ATPasique de l’enzyme, entrainant la production d’ADP extracellulaire puis l’activation spécifique du récepteur nucléotidique P2Y13, aboutissant in fine à l’endocytose des HDL. Ainsi, l’équipe a montré le rôle clé de la voie ecto-F1-ATPase/P2Y13 dans l’endocytose hépatique des HDL et par conséquent dans les effets protecteurs de ces derniers dans l’athérosclérose.Les travaux de thèse présentés ici visent à déterminer les mécanismes de régulation de cette ecto-F1-ATPase. Compte tenu de l’importance de la régulation des taux d’ADP et d’ATP extracellulaires dans l’endocytose des HDL, nous nous sommes intéressés dans un premier temps aux acteurs moléculaires qui pourraient réguler le métabolisme nucléotidique à la surface cellulaire. Nous avons mis en évidence la présence, à la surface des cellules HepG2, de l’adénine nucléotide translocase (ANT), une autre protéine classiquement localisée à la mitochondrie. Nous avons montré que l’ecto-ANT est impliquée dans la régulation des taux des nucléotides adényliques ADP et ATP extracellulaires et que son fonctionnement est lui-même dépendant du taux de ces derniers dans le milieu extracellulaire. / The cardioprotective effect of high-density lipoprotein cholesterol (HDL-C) is mostly attributed to their metabolic functions in reverse cholesterol transport (RCT), a process whereby excess cell cholesterol is taken up from peripheral cells and processed in HDL particles, and later delivered to the liver for further metabolism and bile excretion. ATP synthase, classically known to be located in the mitochondrial inner membrane, has been unexpectedly found expressed at the plasma membrane of hepatocytes, as a receptor for apoA-I, playing a role in HDL-cholesterol uptake. On hepatocytes, apoA-I binding to ecto-F1-ATPase stimulates extracellular ATP hydrolysis into ADP, which subsequently activates a P2Y13-mediated HDL endocytosis pathway. The strict dependence of HDL endocytosis on extracellular ADP level led us to study first, whether other plasma membrane proteins than ecto-F1-ATPase could regulate extracellular ADP level. We highlighted the presence on hepatocytes cell surface of Adenine Nucleotide Translocase (ANT), another transmembrane protein of the inner mitochondrial membrane. We showed that ecto-ANT activity could increase or reduce extracellular ADP level, depending on the extracellular ADP/ATP ratio. Furthermore, we demonstrated that pharmacological inhibition of ecto-ANT activity increased extracellular ADP level when ecto-F1-ATPase was activated by apoA-I. This increase in the bioavailability of extracellular ADP accordingly translated into an increase of HDL endocytosis in human hepatocytes. We then sought to explore the molecular mechanisms involved in targeting ecto-F1-ATPase to the plasma membrane. Indeed, F1-ATPase ectopic expression at the plasma membrane has been described on several cell types and has been related to several physiological and pathophysiological processes however, the pathway involved in its transport to the cell surface remains unknown.
|
4 |
Statut des transporteurs du cholestérol au niveau de l'intestin et du foie dans le diabète de type 2Lalonde, Geneviève 08 1900 (has links)
La résistance à l’insuline et le diabète de type 2 (DT2) sont caractérisés par une hyperlipidémie. Le but de cette étude est de déterminer si le DT2 contribue au dérèglement du métabolisme du cholestérol au niveau du petit intestin et du foie du Psammomys obesus, un modèle animal nutritionnel d’induction de la résistance à l’insuline et du DT2. L’absorption intestinale du cholestérol est diminuée chez les animaux diabétiques. Cette diminution est associée à une baisse (i) de l’expression génique et protéique de NPC1-L1 qui joue un rôle primordial dans l’absorption du cholestérol au niveau des entérocytes; et (ii) de l’ARNm de l’ABCA1 responsable de l’efflux de cholestérol des cellules intestinales à l’apolipoprotéine A-I et aux HDLs. En ce qui a trait aux transporteurs SR-B1 et Annexin II, aucune différence n’a été observée au niveau intestinal. Toutefois, une diminution significative de l’expression génique de l’ABCG5, un intervenant majeur dans la sécrétion du cholestérol des entérocytes vers la lumière intestinale, est mesurée chez les animaux diabétiques. De plus, l’expression protéique est diminuée pour le PCSK9 et augmentée pour le LDLr au niveau du jéjunum, tandis que la quantité de protéine de l’enzyme HMG-CoA réductase est régulée à la baisse chez les Psammomys obesus diabétiques. Finalement, de tous les facteurs de transcription testés seule une augmentation de LXR et une diminution de PPAR/δ sont détectées au niveau de l’intestin. Au niveau hépatique, il y a (i) une augmentation de la masse protéique de NPC1-L1, SR-BI et Annexin II; (ii) une élévation l’ARNm de SR-BI; (iii) une diminution du contenu protéique de ABCG8 et de l’expression génique de l’ABCG5 et de l’ABCA1; et (iv) une élévation de l’ARNm de LXR et de PPAR/δ, tout comme une baisse de l’expression protéique de SREBP-2. Somme toute, nos résultats montrent que le développement du diabète de type 2 chez le Psammomys obesus entraîne un changement dans la machinerie intra-entérocytaire et hépatocytaire, qui mène à un dérèglement de l’homéostasie du cholestérol. / Insulin resistance and type 2 diabetes (T2D) are characterized by hyperlipidemia. The aim of the present study was to elucidate whether T2D contributes to abnormal cholesterol homeostasis in the small intestine and liver of Psammomys obesus, a model of nutritionally induced insulin resistance and type 2 diabetes. Diabetic animals exhibited a lower intestinal cholesterol uptake, which was associated with a decrease in (i) the gene and protein expression of NPC1L1, which plays a pivotal role in cholesterol incorporation in the enterocytes; and (ii) mRNA of ABCA1 that mediates cholesterol efflux from intestinal cells to apolipoprotein A-I and HDL. No changes were observed in the other intestinal transporters SR-BI and Annexin II. On the other hand, in diabetic animals, a significant mRNA decrease was noticed in ABCG5 responsible for the secretion of absorbed cholesterol back into the lumen. Furthermore, jejunal PCSk9 protein was diminished and LDLr was raised, along with a significant downregulation in jejunal HMG-CoA reductase in diabetic Psammomys obesus. Finally, among the transcription factors tested, only an increase in LXR and a decrease in PPAR/δ were detected in the intestine. In the liver, there was (i) an augmentation in the protein mass of NPC1L1, SR-BI and Annexin II; (ii) an upregulation of SR-BI mRNA; (iii) a fall in ABCG8 protein content, ABCG5 mRNA and ABCA1 mRNA; and (iv) an augmentation in LXR and PPAR/δ mRNA, as well as a drop in SREBP-2 protein. Overall, our findings show that the development of type 2 diabetes in Psammomys obesus modifies the whole intra-enterocyte and hepatocyte machinery, causing alterations in cholesterol homeostasis.
|
5 |
Statut des transporteurs du cholestérol au niveau de l'intestin et du foie dans le diabète de type 2Lalonde, Geneviève 08 1900 (has links)
La résistance à l’insuline et le diabète de type 2 (DT2) sont caractérisés par une hyperlipidémie. Le but de cette étude est de déterminer si le DT2 contribue au dérèglement du métabolisme du cholestérol au niveau du petit intestin et du foie du Psammomys obesus, un modèle animal nutritionnel d’induction de la résistance à l’insuline et du DT2. L’absorption intestinale du cholestérol est diminuée chez les animaux diabétiques. Cette diminution est associée à une baisse (i) de l’expression génique et protéique de NPC1-L1 qui joue un rôle primordial dans l’absorption du cholestérol au niveau des entérocytes; et (ii) de l’ARNm de l’ABCA1 responsable de l’efflux de cholestérol des cellules intestinales à l’apolipoprotéine A-I et aux HDLs. En ce qui a trait aux transporteurs SR-B1 et Annexin II, aucune différence n’a été observée au niveau intestinal. Toutefois, une diminution significative de l’expression génique de l’ABCG5, un intervenant majeur dans la sécrétion du cholestérol des entérocytes vers la lumière intestinale, est mesurée chez les animaux diabétiques. De plus, l’expression protéique est diminuée pour le PCSK9 et augmentée pour le LDLr au niveau du jéjunum, tandis que la quantité de protéine de l’enzyme HMG-CoA réductase est régulée à la baisse chez les Psammomys obesus diabétiques. Finalement, de tous les facteurs de transcription testés seule une augmentation de LXR et une diminution de PPAR/δ sont détectées au niveau de l’intestin. Au niveau hépatique, il y a (i) une augmentation de la masse protéique de NPC1-L1, SR-BI et Annexin II; (ii) une élévation l’ARNm de SR-BI; (iii) une diminution du contenu protéique de ABCG8 et de l’expression génique de l’ABCG5 et de l’ABCA1; et (iv) une élévation de l’ARNm de LXR et de PPAR/δ, tout comme une baisse de l’expression protéique de SREBP-2. Somme toute, nos résultats montrent que le développement du diabète de type 2 chez le Psammomys obesus entraîne un changement dans la machinerie intra-entérocytaire et hépatocytaire, qui mène à un dérèglement de l’homéostasie du cholestérol. / Insulin resistance and type 2 diabetes (T2D) are characterized by hyperlipidemia. The aim of the present study was to elucidate whether T2D contributes to abnormal cholesterol homeostasis in the small intestine and liver of Psammomys obesus, a model of nutritionally induced insulin resistance and type 2 diabetes. Diabetic animals exhibited a lower intestinal cholesterol uptake, which was associated with a decrease in (i) the gene and protein expression of NPC1L1, which plays a pivotal role in cholesterol incorporation in the enterocytes; and (ii) mRNA of ABCA1 that mediates cholesterol efflux from intestinal cells to apolipoprotein A-I and HDL. No changes were observed in the other intestinal transporters SR-BI and Annexin II. On the other hand, in diabetic animals, a significant mRNA decrease was noticed in ABCG5 responsible for the secretion of absorbed cholesterol back into the lumen. Furthermore, jejunal PCSk9 protein was diminished and LDLr was raised, along with a significant downregulation in jejunal HMG-CoA reductase in diabetic Psammomys obesus. Finally, among the transcription factors tested, only an increase in LXR and a decrease in PPAR/δ were detected in the intestine. In the liver, there was (i) an augmentation in the protein mass of NPC1L1, SR-BI and Annexin II; (ii) an upregulation of SR-BI mRNA; (iii) a fall in ABCG8 protein content, ABCG5 mRNA and ABCA1 mRNA; and (iv) an augmentation in LXR and PPAR/δ mRNA, as well as a drop in SREBP-2 protein. Overall, our findings show that the development of type 2 diabetes in Psammomys obesus modifies the whole intra-enterocyte and hepatocyte machinery, causing alterations in cholesterol homeostasis.
|
Page generated in 0.067 seconds