• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Techniky paralelního zpracování výpočtů / Techniques for parallel computing

Vodák, René January 2014 (has links)
The text of this thesis deals with techniques of parallel processing calculations. It is an analysis of the most important libraries for parallelization including libraries for parallelization on GPU graphics cards and computing speed by comparing these libraries in Visual Studio 2010 based on a simple application searching primes on three different computer hardware configurations. With OpenCL library, that achieved the best result, there are formed two applications – an improved program for searching prime numbers using the sieve of Eratosthenes and a program for calculating the integral with the trapezoidal rule.
2

Contribution à la régression non paramétrique avec un processus erreur d'autocovariance générale et application en pharmacocinétique / Contribution to nonparametric regression estimation with general autocovariance error process and application to pharmacokinetics

Benelmadani, Djihad 18 September 2019 (has links)
Dans cette thèse, nous considérons le modèle de régression avec plusieurs unités expérimentales, où les erreurs forment un processus d'autocovariance dans un cadre générale, c'est-à-dire, un processus du second ordre (stationnaire ou non stationnaire) avec une autocovariance non différentiable le long de la diagonale. Nous sommes intéressés, entre autres, à l'estimation non paramétrique de la fonction de régression de ce modèle.Premièrement, nous considérons l'estimateur classique proposé par Gasser et Müller. Nous étudions ses performances asymptotiques quand le nombre d'unités expérimentales et le nombre d'observations tendent vers l'infini. Pour un échantillonnage régulier, nous améliorons les vitesses de convergence d'ordre supérieur de son biais et de sa variance. Nous montrons aussi sa normalité asymptotique dans le cas des erreurs corrélées.Deuxièmement, nous proposons un nouvel estimateur à noyau pour la fonction de régression, basé sur une propriété de projection. Cet estimateur est construit à travers la fonction d'autocovariance des erreurs et une fonction particulière appartenant à l'Espace de Hilbert à Noyau Autoreproduisant (RKHS) associé à la fonction d'autocovariance. Nous étudions les performances asymptotiques de l'estimateur en utilisant les propriétés de RKHS. Ces propriétés nous permettent d'obtenir la vitesse optimale de convergence de la variance de cet estimateur. Nous prouvons sa normalité asymptotique, et montrons que sa variance est asymptotiquement plus petite que celle de l'estimateur de Gasser et Müller. Nous conduisons une étude de simulation pour confirmer nos résultats théoriques.Troisièmement, nous proposons un nouvel estimateur à noyau pour la fonction de régression. Cet estimateur est construit en utilisant la règle numérique des trapèzes, pour approximer l'estimateur basé sur des données continues. Nous étudions aussi sa performance asymptotique et nous montrons sa normalité asymptotique. En outre, cet estimateur permet d'obtenir le plan d'échantillonnage optimal pour l'estimation de la fonction de régression. Une étude de simulation est conduite afin de tester le comportement de cet estimateur dans un plan d'échantillonnage de taille finie, en terme d'erreur en moyenne quadratique intégrée (IMSE). De plus, nous montrons la réduction dans l'IMSE en utilisant le plan d'échantillonnage optimal au lieu de l'échantillonnage uniforme.Finalement, nous considérons une application de la régression non paramétrique dans le domaine pharmacocinétique. Nous proposons l'utilisation de l'estimateur non paramétrique à noyau pour l'estimation de la fonction de concentration. Nous vérifions son bon comportement par des simulations et une analyse de données réelles. Nous investiguons aussi le problème de l'estimation de l'Aire Sous la Courbe de concentration (AUC), pour lequel nous proposons un nouvel estimateur à noyau, obtenu par l'intégration de l'estimateur à noyau de la fonction de régression. Nous montrons, par une étude de simulation, que le nouvel estimateur est meilleur que l'estimateur classique en terme d'erreur en moyenne quadratique. Le problème crucial de l'obtention d'un plan d'échantillonnage optimale pour l'estimation de l'AUC est discuté en utilisant l'algorithme de recuit simulé généralisé. / In this thesis, we consider the fixed design regression model with repeated measurements, where the errors form a process with general autocovariance function, i.e. a second order process (stationary or nonstationary), with a non-differentiable covariance function along the diagonal. We are interested, among other problems, in the nonparametric estimation of the regression function of this model.We first consider the well-known kernel regression estimator proposed by Gasser and Müller. We study its asymptotic performance when the number of experimental units and the number of observations tend to infinity. For a regular sequence of designs, we improve the higher rates of convergence of the variance and the bias. We also prove the asymptotic normality of this estimator in the case of correlated errors.Second, we propose a new kernel estimator of the regression function based on a projection property. This estimator is constructed through the autocovariance function of the errors, and a specific function belonging to the Reproducing Kernel Hilbert Space (RKHS) associated to the autocovariance function. We study its asymptotic performance using the RKHS properties. These properties allow to obtain the optimal convergence rate of the variance. We also prove its asymptotic normality. We show that this new estimator has a smaller asymptotic variance then the one of Gasser and Müller. A simulation study is conducted to confirm this theoretical result.Third, we propose a new kernel estimator for the regression function. This estimator is constructed through the trapezoidal numerical approximation of the kernel regression estimator based on continuous observations. We study its asymptotic performance, and we prove its asymptotic normality. Moreover, this estimator allow to obtain the asymptotic optimal sampling design for the estimation of the regression function. We run a simulation study to test the performance of the proposed estimator in a finite sample set, where we see its good performance, in terms of Integrated Mean Squared Error (IMSE). In addition, we show the reduction of the IMSE using the optimal sampling design instead of the uniform design in a finite sample set.Finally, we consider an application of the regression function estimation in pharmacokinetics problems. We propose to use the nonparametric kernel methods, for the concentration-time curve estimation, instead of the classical parametric ones. We prove its good performance via simulation study and real data analysis. We also investigate the problem of estimating the Area Under the concentration Curve (AUC), where we introduce a new kernel estimator, obtained by the integration of the regression function estimator. We prove, using a simulation study, that the proposed estimators outperform the classical one in terms of Mean Squared Error. The crucial problem of finding the optimal sampling design for the AUC estimation is investigated using the Generalized Simulating Annealing algorithm.
3

Robust Finite Element Strategies for Structures, Acoustics, Electromagnetics and Magneto-hydrodynamics

Nandy, Arup Kumar January 2016 (has links) (PDF)
The finite element method (FEM) is a widely-used numerical tool in the fields of structural dynamics, acoustics and electromagnetics. In this work, our goal is to develop robust FEM strategies for solving problems in the areas of acoustics, structures and electromagnetics, and then extend these strategies to solve multi-physics problems such as magnetohydrodynamics and structural acoustics. We now briefly describe the finite element strategies developed in each of the above domains. In the structural domain, we show that the trapezoidal rule, which is a special case of the Newmark family of algorithms, conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an ‘energy-like measure’ in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics variants of the trapezoidal rule that incorporate ‘high-frequency’ dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid FEM framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigenvalues much more accurately than the standard displacement-based approach, thereby either bypassing or reducing the need for high-frequency dissipation. We show this by means of several examples, where we compare the numerical solutions obtained using the displacementbased and hybrid approaches against analytical solutions. We also present a monolithic formulation for the solution of structural acoustic problems based on the hybrid finite element approach. In the area of electromagnetics, since our goal is to ultimately couple the electromagnetic analysis with structural or fluid variables in a ‘monolithic’ framework, we focus on developing nodal finite elements rather than using ‘edge elements’. It is well-known that conventional nodal finite elements can give rise to spurious solutions, and that they cannot capture singularities when the domains are nonconvex and have sharp corners. The commonly used remedies of either adding a penalty term or using a potential formulation are unable to address these problems satisfactorily. In order to overcome this problem, we first develop several mixed finite elements in two and three dimensions which predict the eigenfrequencies (including their multiplicities) accurately, even for non-convex domains. In this proposed formulation, no ad-hoc terms are added as in the penalty formulation, and the improvement is achieved purely by an appropriate choice of the finite element spaces for the different variables. For inhomogeneous domains, ‘double noding’ is used to enforce the appropriate continuity conditions at an interface. Although the developed mixed FEM works very accurately for all 2D geometries and regular Cartesian 3D geometries, it has so far not yielded success for curved 3D geometries. Therefore, for 3D harmonic and transient analysis problems, we propose and use a modified form of the potential formulation that overcomes the disadvantages of the standard potential method, especially on non-convex domains. Electromagnetic radiation and scattering in an exterior domain traditionally involved imposing a suitable absorbing boundary condition (ABC) on the truncation boundary of the numerical domain to inhibit reflection from it. In this work, based on the Wilcox asymptotic expansion of the electric far-field, we propose an amplitude formulation within the framework of the nodal FEM, whereby the highly oscillatory radial part of the field is separated out a-priori so that the standard Lagrange interpolation functions have to capture a relatively gently varying function. Since these elements can be used in the immediate vicinity of the radiator or scatterer (with few exceptions which we enumerate), it is more effective compared to methods of imposing ABCs, especially for high-frequency problems. We show the effectiveness of the proposed formulation on a wide variety of radiation and scattering problems involving both conducting and dielectric bodies, and involving both convex and non-convex domains with sharp corners. The Time Domain Finite Element Method (TDFEM) has been used extensively to solve transient electromagnetic radiation and scattering problems. Although conservation of energy in electromagnetics is well-known, we show in this work that there are additional quantities that are also conserved in the absence of loading. We then show that the developed time-stepping strategy (which is closely related to the trapezoidal rule) mimics these continuum conservation properties either exactly or to a very good approximation. Thus, the developed numerical strategy can be said to be ‘unconditionally stable’ (from an energy perspective) allowing the use of arbitrarily large time-steps. We demonstrate the high accuracy and robustness of the developed method for solving both interior and exterior domain radiation problems, and for finding the scattered field from conducting and dielectric bodies. In the field of magneto-hydrodynamics, we develop a monolithic strategy based on a continuous velocity-pressure formulation that is known to satisfy the Babuska-Brezzi (BB) conditions. The magnetic field is interpolated in the same way as the velocity field, and the entire formulation is within a nodal finite element framework. Both transient and steady-state formulations are developed for two- and three-dimensional geometries. An exact linearization of the monolithic strategy ensures that rapid (quadratic) convergence is achieved within each time (or load) step, while the stable nature of the interpolations used ensure that no instabilities arise in the solution. Good agreement with analytical solutions, even with the use of very coarse meshes, shows the efficacy of the developed formulation.
4

Analýza ROC křivek zvukových signálů a jejich srovnání / Analysis and comparison of ROC curves of audio signals

Pospíšil, Lukáš January 2017 (has links)
This thesis deals with oportunity of ROC curve usage in the description of methods that work with sound signals. Specifically, it focuses on ways of detecting of stress in speech signals. The detection itselfs is done in a range of frequencies of the sound signal. There is also a classifier designed using ROC curves that decides whether the input signal is stressed or not. The output of this thesis are findings gathered from analyses and also some recommendation based on those analyses.

Page generated in 0.0562 seconds