• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of electrocoagulation/flotation (ECF) for industrial wastewater treatment

Jafari, Ehsan 11 April 2024 (has links)
Many industrial processes would require enormous amounts of water, which could ultimately result in wastewater. Water scarcity in many parts of the world makes this situation unsustainable. In order to reuse wastewater in industrial processes or for other purposes, wastewater must be treated properly. In industrial wastewater treatment, electrocoagulation-flotation (ECF) can be used to dissolve sacrificial electrodes and produce metal coagulant in-situ by applying a current to the electrodes. The reactor design and electrode configuration can profoundly affect the performance of electrocoagulation-flotation (ECF). While most conventional ECF reactors use an open-vertical electrode configuration in rectangular cells, mixing is limited by vertical electrodes that make a barrier and disrupt the flow hydrodynamics. The effects of these factors may influence removal efficiency, flow hydrodynamic, floc formation, and flotation/settling characteristics. The present work aimed to optimize the ECF process by developing an innovative electrode configuration. A variety of parameters were examined to determine the effectiveness of the removal of contaminants from industrial wastewater that had turbidity, emulsified oil, and heavy metals (Si, Zn, Pb, Ni, Cu, Cr, and Cd), as well as stirring speed and foaming. Additionally, the experimental results of the innovative electrode configuration were compared with those of the conventional rectangular cell with plate electrode configuration. Based on the results, the innovative electrode configuration consumed approximately 20% less energy than a conventional ECF for operating times of 10, 20, 30, 32, 48, and 70 minutes. As a result of the enhanced flow hydrodynamic, the formed gas bubbles tilted toward the center, significantly reducing foam formation. There was also an investigation of the dominant operating parameters for electrocoagulation-flotation (ECF) that could affect the removal efficiency, including current density (CD), initial pH, electrolytic conductivity, dosage of coagulant, operating time, initial turbidity concentration, and stirring speed. In addition, a novel approach has been proposed for evaluating EC performance and selecting an appropriate process for removing sludge based on the intake's initial concentration. Keywords: Electrode configuration, electrocoagulation process, electro-flotation, energy consumption, removal efficiency, Electrochemical treatment, Aluminium electrode, Turbidity removal, TOC removal, operating parameters, computational fluid dynamics, Reynolds number, mass transfer, pH evolution.:Table of Contents Abstract 7 1. Introduction 16 1.1. The electrocoagulation process 17 1.2. Problem statement 19 1.3. Objectives 20 1.4. Scope of the work 21 2. Literature survey 23 2.1. Industrial wastewater and treatment methods 24 2.1.1. Impact of industrial growth 24 2.1.2. An analysis of global industrial growth based on statistics 25 2.1.3. Extensive sources of industrial effluent 26 2.1.4. Wastewater and reserve rehabilitation in industry 34 2.1.5. Applied techniques in industrial wastewater treatment 40 2.2. Electrocoagulation (ECF) 50 2.3. Comparison of EC with other treatment methods 50 2.4. Basic concepts and theory of coagulation and electrocoagulation 53 2.5. Electrocoagulation applications 58 2.5.4. Textile industry 60 2.5.5. Leather Tanning Industry 61 2.5.6. Metal-bearing industrial effluents 61 2.5.7. Pulp and paper industry 62 2.5.8. Petroleum refinery 63 2.6. Type and Configuration of the Electrodes 64 2.6.1. Case of Al electrodes 66 2.6.2. Case of Fe electrodes 68 2.7. Reactor design 71 2.6. Modeling 72 2.6.1. Kinetics 73 2.7. Impact of electrocoagulation operating condition on contaminant removal efficiency 75 2.7.1. Effect of current density 75 2.7.2. Effect of initial pH 75 2.7.3. Effect of operating time 76 2.7.4. Effect of electro conductivity 76 2.7.5. Effect of stirring speed 77 2.7.6. Effect of concentration 77 2.7.7. Effect of gap between the electrodes 77 2.7.8. Effect of temperature 78 2.8. Economical aspects and cost analysis 78 3. Material and methods of the tests 80 3.1. Test procedure 1: Impact of operating parameters on removal of turbidity 81 3.1.1. Operating conditions 81 3.1.2. EC cell construction and electrode arrangement 82 3.1.3. Synthetic wastewater 85 3.1.4. Analytical methods and EC procedure 86 3.1.5. Anodic and cathodic reactions 87 3.1.6. Electrical double layer and particle stability 89 3.2. Test procedure 2: Spiral electrode configuration 91 3.2.1. Experimental Setup 91 3.2.2. Sampling and analytical measurements 95 3.2.3. Experimental procedure 95 4. Results and discussion 97 4.1. Test procedure 1: Impact of operating parameters on removal of turbidity 98 4.1.1. Effect of current density (CD) 98 4.1.2. Effect of initial pH 100 4.1.3. Effect of electrolytic conductivity 104 4.1.4. Effect of coagulant dosage, electrode and energy consumption 106 4.1.5. Effect of current density and operating time on initial turbidity concentration 107 4.1.6. Effect of stirring speed 111 4.1.7. Effect of electrode passivation 112 4.2. Test procedure 2: Spiral electrode configuration 115 4.2.1. Removal efficiency of contaminants 115 4.2.2. Effect of stirring speed and ECF configuration on removal efficiency 119 4.2.3. Energy consumption and voltage rise 123 4.2.4. Foaming effect 126 4.3. Computational Fluid Dynamics (CFD) Simulation 128 5. Conclusions and future work 138 5.1. Conclusions 139 5.2. Future works 142 References 143 6. Appendix 159
2

Optimierung der Therapie von chronischer myeloischer Leukämie mit Hilfe eines dynamischen Modells normaler und leukämischer Stammzellorganisation

Horn, Matthias 24 October 2014 (has links) (PDF)
Unter Verwendung eines mathematischen Hämatopoese-Modells werden verschiedene Fragen adressiert, die im Zusammenhang mit einer möglichen Optimierung der gegenwärtigen Therapie chronischer myeloischer Leukämie (CML) stehen. Es handelt sich um ein agentenbasiertes Modell, das heißt, jede Zelle wird als einzelnes Objekt repräsentiert und gemäß festgelegter Regeln im Computer simuliert. Es werden proliferative von ruhenden Stammzellen unterschieden, wobei sich der Proliferationszustand reversibel ändern kann. Das Modell basiert auf der Annahme, dass sich normale und maligne Stammzellen in einem Wettbewerb um gemeinsame Ressourcen befinden, wobei der CML-Klon einen kompetitiven Vorteil besitzt. Es ist ungeklärt, ob Tyrosinkinaseinhibitoren wie Imatinib (IM) in der Lage sind, die Erkrankung zu heilen. Es gibt Evidenz, dass residuale leukämische Stammzellen im Knochenmark persistieren, welche in einem Ruhezustand (G0-Phase des Zellzyklus) von IM nicht eradiziert werden können. Proliferativ aktive Zellen sind der IM-Wirkung hingegen ausgesetzt. Das Modell sagt voraus, unter welchen Bedingungen eine Kombinationsstrategie von IM mit stammzellaktivierenden Substanzen Synergieeffekte hervorbringen könnte. Ein verwandtes Problem ist die Frage, in welchen Fällen nach Reduktion der Tumorlast auf ein mittels hochsensitiver Messmethoden undetektierbares Niveau ein Therapieabbruch gerechtfertigt ist. Basierend auf dem dynamischen Modell wird in dieser Arbeit ein Prädiktor vorgeschlagen, der vorhersagt, ob ein Patient nach Abbruch der Therapie einen molekularen Rückfall zu erwarten hat. Zusätzlich wird approximativ ein modellunabhängiger Prädiktor angegeben, der die Vorhersage nur auf Basis klinisch messbarer Größen gestattet.
3

Optimierung der Therapie von chronischer myeloischer Leukämie mit Hilfe eines dynamischen Modells normaler und leukämischer Stammzellorganisation

Horn, Matthias 15 October 2014 (has links)
Unter Verwendung eines mathematischen Hämatopoese-Modells werden verschiedene Fragen adressiert, die im Zusammenhang mit einer möglichen Optimierung der gegenwärtigen Therapie chronischer myeloischer Leukämie (CML) stehen. Es handelt sich um ein agentenbasiertes Modell, das heißt, jede Zelle wird als einzelnes Objekt repräsentiert und gemäß festgelegter Regeln im Computer simuliert. Es werden proliferative von ruhenden Stammzellen unterschieden, wobei sich der Proliferationszustand reversibel ändern kann. Das Modell basiert auf der Annahme, dass sich normale und maligne Stammzellen in einem Wettbewerb um gemeinsame Ressourcen befinden, wobei der CML-Klon einen kompetitiven Vorteil besitzt. Es ist ungeklärt, ob Tyrosinkinaseinhibitoren wie Imatinib (IM) in der Lage sind, die Erkrankung zu heilen. Es gibt Evidenz, dass residuale leukämische Stammzellen im Knochenmark persistieren, welche in einem Ruhezustand (G0-Phase des Zellzyklus) von IM nicht eradiziert werden können. Proliferativ aktive Zellen sind der IM-Wirkung hingegen ausgesetzt. Das Modell sagt voraus, unter welchen Bedingungen eine Kombinationsstrategie von IM mit stammzellaktivierenden Substanzen Synergieeffekte hervorbringen könnte. Ein verwandtes Problem ist die Frage, in welchen Fällen nach Reduktion der Tumorlast auf ein mittels hochsensitiver Messmethoden undetektierbares Niveau ein Therapieabbruch gerechtfertigt ist. Basierend auf dem dynamischen Modell wird in dieser Arbeit ein Prädiktor vorgeschlagen, der vorhersagt, ob ein Patient nach Abbruch der Therapie einen molekularen Rückfall zu erwarten hat. Zusätzlich wird approximativ ein modellunabhängiger Prädiktor angegeben, der die Vorhersage nur auf Basis klinisch messbarer Größen gestattet.
4

Υπολογιστικές προσομοιώσεις διαγνωστικών και θεραπευτικών τεχνικών που αφορούν σε φυσιολογικά και παθολογικά κυτταρικά συστήματα

Κολοκοτρώνη, Ελένη 29 April 2014 (has links)
Η διατριβή αφορά την ανάπτυξη και υλοποίηση ενός τετραδιάστατου, διακριτού μοντέλου προσομοίωσης της συμπεριφοράς καρκινικών κυτταρικών συστημάτων σε ελεύθερη ανάπτυξη και της απόκρισής τους σε χημειοθεραπευτική ή και ακτινοθεραπευτική αγωγή. Υλοποιήθηκαν δύο εκδοχές του μοντέλου: η χωρική και η μη χωρική προσέγγιση. Η χωρική προσέγγιση αναφέρεται στην τετραδιάστατη προσομοίωση συμπαγών όγκων. Η μη χωρική προσέγγιση βρίσκει εφαρμογή στην περίπτωση μη συμπαγών όγκων, καθώς και συμπαγών όγκων, όταν δεν δίνεται έμφαση στη χωρική εξέλιξή τους. Η ερευνητική εργασία έχει επικεντρωθεί σε τρεις τύπους καρκινικών όγκων: καρκίνος του μαστού, καρκίνος του πνεύμονα και πολύμορφο γλοιοβλάστωμα και σε θεραπευτικά σχήματα χορήγησης των σκευασμάτων: επιρουβικίνη (epirubicin), τεμοζολομίδη (temozolomide), σισπλατίνη (cisplatin), γεμσιταμπίνη (gemcitabine), βινορελμπίνη (vinorelbine) και δοσεταξέλη (docetaxel). Σκοπός της εργασίας είναι η ανάπτυξη ενός εργαλείου για την αξιόπιστη υποστήριξη ιατρών στη λήψη αποφάσεων σχετικά με την επιλογή θεραπευτικών σχημάτων και την εξατομικευμένη βελτιστοποίηση της θεραπευτικής αγωγής. Η αφετηρία είναι η μοντελοποίηση του κυτταρικού κύκλου και των πιθανών μεταβάσεων μεταξύ των καταστάσεων που μπορεί να βρεθεί ένα κύτταρο. Το μοντέλο βασίζεται στην υπόθεση ότι ο καρκινικός όγκος διατηρείται από μια συγκεκριμένη κατηγορία κυττάρων, τα καρκινικά βλαστικά κύτταρα (cancer stem cells), και έχει επεκταθεί ώστε να περιλαμβάνει σε μεγαλύτερη λεπτομέρεια διάφορους βιολογικούς μηχανισμούς σε μοριακό (πχ. εκφράσεις γονιδίων) και κυτταρικό επίπεδο. Ο μηχανισμός δράσης, η φαρμακοκινητική και η φαρμακοδυναμική των θεωρούμενων σκευασμάτων έχουν μελετηθεί βιβλιογραφικά και έχουν ενσωματωθεί στο μοντέλο. Επίσης, το μοντέλο έχει αναπτυχθεί ώστε να λαμβάνει υπόψη του την κλινική εικόνα του ασθενούς με χρήση εξατομικευμένων κλινικών δεδομένων, όπως απεικονιστικά δεδομένα (π.χ. CT, MRI, PET), ιστοπαθολογικά δεδομένα (π.χ. τύπος όγκου, βαθμός διαφοροποίησης) και μοριακά δεδομένα (π.χ. έκφραση γονιδίων). Στα πλαίσια της διατριβής πραγματοποιούνται έλεγχοι αξιοπιστίας και εκτενείς παραμετρικές μελέτες για την αποσαφήνιση της ευαισθησίας του μοντέλου στη διακύμανση των παραμέτρων του τόσο κατά την προσομοίωση της ελεύθερης ανάπτυξης όσο και κατά την εφαρμογή της χημειοθεραπευτικής αγωγής. Η ποσοτική αξιολόγηση, προσαρμογή και βελτιστοποίηση του μοντέλου πραγματοποιείται στα πλαίσια των ευρωπαϊκών ερευνητικών προγραμμάτων ACGT (Advancing Clinicogenomic Trials on Cancer, FP6-2005-IST-026996), ContraCancrum (Clinically Oriented Cancer Multilevel Modelling, FP7-ICT-2007-2-223979) και P-medicine (From data sharing and integration via VPH models to Personalized medicine, FP7-ICT-2009-6-270089) μέσω της αξιοποίησης πραγματικών κλινικών δεδομένων. Στην παρούσα διατριβή παρουσιάζονται τα αποτελέσματα της προσαρμογής του μοντέλου σε κλινικά δεδομένα του καρκίνου του μαστού, του καρκίνου του πνεύμονα και του πολύμορφου γλοιοβλαστώματος. Επιπλέον, διάφορες εκδόσεις του μοντέλου έχουν αξιοποιηθεί για ‘την επάνδρωση’ μιας ευρωπαϊκής βάσης μοντέλων για τον καρκίνο, που υλοποιείται στα πλαίσια του ευρωπαϊκού ερευνητικού προγράμματος TUMOR (Transatlantic Tumour Model Repositories, FP7-ICT-2009-5-247754). Το μοντέλο υλοποιείται σε γλώσσα προγραμματισμού C++. / In the present thesis, a clinically oriented, multiscale, discrete simulation model of cancer free growth and response to chemotherapy and/or radiotherapy is presented and investigated. Two versions of the model have been implemented: the spatial and the non spatial approach. The spatial model concerns the spatiotemporal evolution of solid tumours, whereas the non spatial model can be applied in the case of non solid cancers, as well as solid tumours, when no emphasis is put on the spatial features of a tumour evolution. The research work has been focused on the paradigms of early breast cancer treated with the single agent epirubicin, primary lung cancer treated with various combinations of cisplatin, gemcitabine, vinorelbin and docetaxel and glioblastoma multiforme treated with combined modality treatment using radiation and chemotherapy with temozolomide. The goal is to end up with a reliable simulation system able to assist clinicians in selecting the most appropriate therapeutic pattern, extracted from several candidate therapeutic schemes in the context of patient individualized treatment optimization. The model incorporates the biological mechanisms of cell cycling, quiescence, recruitment (reentry into the cell cycle), differentiation and death. It is based on the well documented assumption that tumour sustenance is due to the existence of cancer stem cells, i.e. cells which have the ability to preserve their own population, as well as give birth to cells that follow the path towards terminal differentiation. Furthermore, the mechanism of action, pharmacokinetics and pharmacodynamics of all considered agents have been bibliographically studied and incorporated into the model. Finally, the model has been developed to support and incorporate individualized clinical data such as imaging data (e.g. CT, MRI, PET slices, possibly fused), including the definition of the tumour contour and internal tumour regions (proliferating, necrotic), histopathologic (e.g., type of tumour) and genetic data (e.g., gene expression). An exhaustive and in-depth examination of the model behaviour with respect to the variation of its input parameters has been performed, in order to determine the impact of its parameters, guarantee a biologically relevant virtual tumour behaviour and enlighten aspects of the interplay and possible interdependencies of the biological mechanisms modeled. Finally, the model has been quantitativily validated and adaptated in the framework of the ACGT (Advancing Clinicogenomic Trials on Cancer, FP6-2005-IST-026996), ContraCancrum (Clinically Oriented Cancer Multilevel Modelling, FP7-ICT-2007-2-223979) and P-medicine (From data sharing and integration via VPH models to Personalized medicine, FP7-ICT-2009-6-270089) European Commission-funded projects by exploiting real clinical data. In the present thesis, the clinical adaptation of the model focuses on breast cancer, lung cancer and glioblastoma multiforme clinical cases. Moreover, various versions of the model have been uploaded to the EU cancer model repository developed by the TUMOR (Transatlantic Tumour Model Repositories, FP7-ICT-2009-5-247754) European Commission-funded project. The model has been developed in the C++ programming language.

Page generated in 0.1228 seconds