• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geodätische Berechnungen

Lehmann, Rüdiger 01 December 2015 (has links) (PDF)
Dieses Manuskript entstand aus Vorlesungen über Geodätische Berechnungen an der Hochschule für Technik und Wirtschaft Dresden. Da diese Lehrveranstaltung im ersten oder zweiten Semester stattfindet, werden noch keine Methoden der höheren Mathematik benutzt. Das Themenspektrum beschränkt sich deshalb weitgehend auf elementare Berechnungen in der Ebene. Nur im Kapitel 7 kommen einige Methoden der Vektorrechnung zum Einsatz.
2

Geodätische Berechnungen: Internes Manuskript

Lehmann, Rüdiger 01 December 2015 (has links)
Dieses Manuskript entstand aus Vorlesungen über Geodätische Berechnungen an der Hochschule für Technik und Wirtschaft Dresden. Da diese Lehrveranstaltung im ersten oder zweiten Semester stattfindet, werden noch keine Methoden der höheren Mathematik benutzt. Das Themenspektrum beschränkt sich deshalb weitgehend auf elementare Berechnungen in der Ebene. Nur im Kapitel 7 kommen einige Methoden der Vektorrechnung zum Einsatz.
3

Workshop title: A new rational approach to the teaching of trigonometry in schools and colleges

Wildberger, N. J. 20 March 2012 (has links) (PDF)
No description available.
4

Workshop title: A new rational approach to the teaching of trigonometry in schools and colleges

Wildberger, N. J. 20 March 2012 (has links)
No description available.
5

Ebene Geodätische Berechnungen: Internes Manuskript

Lehmann, Rüdiger 28 September 2018 (has links)
Dieses Manuskript entstand aus Vorlesungen über Geodätische Berechnungen an der Hochschule für Technik und Wirtschaft Dresden. Da diese Lehrveranstaltung im ersten oder zweiten Semester stattfindet, werden noch keine Methoden der höheren Mathematik benutzt. Das Themenspektrum beschränkt sich deshalb weitgehend auf elementare Berechnungen in der Ebene.:0 Vorwort 1 Ebene Trigonometrie 1.1 Winkelfunktionen 1.2 Berechnung schiefwinkliger ebener Dreiecke 1.3 Berechnung schiefwinkliger ebener Vierecke 2 Ebene Koordinatenrechnung 2.1 Kartesische und Polarkoordinaten 2.2 Erste Geodätische Grundaufgabe 2.3 Zweite Geodätische Grundaufgabe 3 Flächenberechnung und Flächenteilung 3.1 Flächenberechnung aus Maßzahlen. 3.2 Flächenberechnung aus Koordinaten 3.3 Absteckung und Teilung gegebener Dreiecksflächen 3.4 Absteckung und Teilung gegebener Vierecksflächen 4 Kreis und Ellipse 4.1 Kreisbogen und Kreissegment 4.2 Näherungsformeln für flache Kreisbögen 4.3 Sehnen-Tangenten-Verfahren 4.4 Grundlegendes über Ellipsen 4.5 Abplattung und Exzentrizitäten 4.6 Die Meridianellipse der Erde 4.7 Flächeninhalt und Bogenlängen 5 Ebene Einschneideverfahren 5.1 Bogenschnitt 5.2 Vorwärtsschnitt 5.3 Anwendung: Geradenschnitt 5.4 Anwendung: Kreis durch drei Punkte 5.5 Schnitt Gerade ⎼ Kreis oder Strahl ⎼ Kreis 5.6 Rückwärtsschnitt 5.7 Anwendung: Rechteck durch fünf Punkte 6 Ebene Koordinatentransformationen 6.1 Elementare Transformationsschritte 6.2 Rotation und Translation. 6.3 Rotation, Skalierung und Translation 6.4 Ähnlichkeitstransformation mit zwei identischen Punkten 6.5 Anwendung: Hansensche Aufgabe 6.6 Anwendung: Kleinpunktberechnung 6.7 Anwendung: Rechteck durch fünf Punkte 6.8 Ebene Helmert-Transformation 6.9 Bestimmung der Parameter bei Rotation und Translation 6.10 Ebene Affintransformation 7 Lösungen / This manuscript evolved from lectures on Geodetic Computations at the University of Applied Sciences Dresden (Germany). Since this lecture is given in the first or second semester, no advanced mathematical methods are used. The range of topics is limited to elementary computations in the plane.:0 Vorwort 1 Ebene Trigonometrie 1.1 Winkelfunktionen 1.2 Berechnung schiefwinkliger ebener Dreiecke 1.3 Berechnung schiefwinkliger ebener Vierecke 2 Ebene Koordinatenrechnung 2.1 Kartesische und Polarkoordinaten 2.2 Erste Geodätische Grundaufgabe 2.3 Zweite Geodätische Grundaufgabe 3 Flächenberechnung und Flächenteilung 3.1 Flächenberechnung aus Maßzahlen. 3.2 Flächenberechnung aus Koordinaten 3.3 Absteckung und Teilung gegebener Dreiecksflächen 3.4 Absteckung und Teilung gegebener Vierecksflächen 4 Kreis und Ellipse 4.1 Kreisbogen und Kreissegment 4.2 Näherungsformeln für flache Kreisbögen 4.3 Sehnen-Tangenten-Verfahren 4.4 Grundlegendes über Ellipsen 4.5 Abplattung und Exzentrizitäten 4.6 Die Meridianellipse der Erde 4.7 Flächeninhalt und Bogenlängen 5 Ebene Einschneideverfahren 5.1 Bogenschnitt 5.2 Vorwärtsschnitt 5.3 Anwendung: Geradenschnitt 5.4 Anwendung: Kreis durch drei Punkte 5.5 Schnitt Gerade ⎼ Kreis oder Strahl ⎼ Kreis 5.6 Rückwärtsschnitt 5.7 Anwendung: Rechteck durch fünf Punkte 6 Ebene Koordinatentransformationen 6.1 Elementare Transformationsschritte 6.2 Rotation und Translation. 6.3 Rotation, Skalierung und Translation 6.4 Ähnlichkeitstransformation mit zwei identischen Punkten 6.5 Anwendung: Hansensche Aufgabe 6.6 Anwendung: Kleinpunktberechnung 6.7 Anwendung: Rechteck durch fünf Punkte 6.8 Ebene Helmert-Transformation 6.9 Bestimmung der Parameter bei Rotation und Translation 6.10 Ebene Affintransformation 7 Lösungen
6

Mathematics teachers' metacognitive skills and mathematical language in the teaching-learning of trigonometric functions in township schools / Johanna Sandra Fransman

Fransman, Johanna Sandra January 2014 (has links)
Metacognition is commonly understood in the context of the learners and not their teachers. Extant literature focusing on how Mathematics teachers apply their metacognitive skills in the classroom, clearly distinguishes between teaching with metacognition (TwM) referring to teachers thinking about their own thinking and teaching for metacognition (TfM) which refers to teachers creating opportunities for learners to reflect on their thinking. However, in both of these cases, thinking requires a language, in particular appropriate mathematical language to communicate the thinking by both teacher and learners in the Mathematics classroom. In this qualitative study, which forms part of a bigger project within SANPAD (South Africa Netherlands Research Programme on Alternatives in Development), the metacognitive skills and mathematical language used by Mathematics teachers who teach at two township schools were interrogated using the design-based research approach with lesson study. Data collection instruments included individual interviews and a trigonometric assessment task. Lessons were also observed and video-taped to be viewed and discussed during focus group discussions in which the teachers, together with five Mathematics lecturers, participated. The merging of the design-based research approach with lesson study brought about teacher-lecturer collaboration, referred to in this study as the Mathematics Educators’ Reflective Inquiry (ME’RI) group, and enabled the design of a hypothetical teaching and learning trajectory (HTLT) for the teaching of trigonometric functions. A metacognitive performance profile for the two grade 10 teachers was also developed. The Framework for Analysing Mathematics Teaching for the Advancement of Metacognition (FAMTAM) from Ader (2013) and the Teacher Metacognitive Framework (TMF) from Artzt and Armour-Thomas (2002) were adjusted and merged to develop a new framework, the Metacognitive Teaching for Metacognition Framework (MTMF) to analyse the metacognitive skills used by mathematics teachers TwM as well as TfM. Without oversimplifying the magnitude of these concepts, the findings suggest a simple mathematical equation: metacognitive skills + enhanced mathematical language = conceptualization skills. The findings also suggest that both TwM and TfM are required for effective mathematics instruction. Lastly the findings suggest that the ME’RI group holds promise to enhance the use of the metacognitive skills and mathematical language of Mathematics teachers in Mathematics classrooms. / PhD (Mathematics Education), North-West University, Potchefstroom Campus, 2014
7

Mathematics teachers' metacognitive skills and mathematical language in the teaching-learning of trigonometric functions in township schools / Johanna Sandra Fransman

Fransman, Johanna Sandra January 2014 (has links)
Metacognition is commonly understood in the context of the learners and not their teachers. Extant literature focusing on how Mathematics teachers apply their metacognitive skills in the classroom, clearly distinguishes between teaching with metacognition (TwM) referring to teachers thinking about their own thinking and teaching for metacognition (TfM) which refers to teachers creating opportunities for learners to reflect on their thinking. However, in both of these cases, thinking requires a language, in particular appropriate mathematical language to communicate the thinking by both teacher and learners in the Mathematics classroom. In this qualitative study, which forms part of a bigger project within SANPAD (South Africa Netherlands Research Programme on Alternatives in Development), the metacognitive skills and mathematical language used by Mathematics teachers who teach at two township schools were interrogated using the design-based research approach with lesson study. Data collection instruments included individual interviews and a trigonometric assessment task. Lessons were also observed and video-taped to be viewed and discussed during focus group discussions in which the teachers, together with five Mathematics lecturers, participated. The merging of the design-based research approach with lesson study brought about teacher-lecturer collaboration, referred to in this study as the Mathematics Educators’ Reflective Inquiry (ME’RI) group, and enabled the design of a hypothetical teaching and learning trajectory (HTLT) for the teaching of trigonometric functions. A metacognitive performance profile for the two grade 10 teachers was also developed. The Framework for Analysing Mathematics Teaching for the Advancement of Metacognition (FAMTAM) from Ader (2013) and the Teacher Metacognitive Framework (TMF) from Artzt and Armour-Thomas (2002) were adjusted and merged to develop a new framework, the Metacognitive Teaching for Metacognition Framework (MTMF) to analyse the metacognitive skills used by mathematics teachers TwM as well as TfM. Without oversimplifying the magnitude of these concepts, the findings suggest a simple mathematical equation: metacognitive skills + enhanced mathematical language = conceptualization skills. The findings also suggest that both TwM and TfM are required for effective mathematics instruction. Lastly the findings suggest that the ME’RI group holds promise to enhance the use of the metacognitive skills and mathematical language of Mathematics teachers in Mathematics classrooms. / PhD (Mathematics Education), North-West University, Potchefstroom Campus, 2014
8

Hands On Workshops

Butler, Douglas 06 March 2012 (has links) (PDF)
No description available.
9

Hands On Workshops

Butler, Douglas 06 March 2012 (has links)
No description available.

Page generated in 0.0483 seconds