• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 46
  • 15
  • 8
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 230
  • 227
  • 63
  • 60
  • 48
  • 45
  • 40
  • 33
  • 31
  • 27
  • 26
  • 24
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Preparation of Active, Stable Supported Iron Catalysts and Deactivation by Carbon of Cobalt Catalysts for Fischer-Tropsch Synthesis

Keyvanloo, Kamyar 01 November 2014 (has links) (PDF)
The first half of this dissertation reports the development of supported Fe FT catalysts including the effects of various, carefully chosen preparation methods on the performance of alumina-supported iron/copper/potassium (FeCuK/Al2O3); it was determined that non-aqueous slurry impregnation and co-impregnation yielded catalysts with activities as high as any reported in the literature. Furthermore, the effects of support properties including pore size, hydroxyl group concentration, and support stabilizer were investigated for FeCuK/Al2O3 catalysts containing 20 or 40% Fe. For the first time, we report the performance of a supported Fe FT catalyst that is not only more active and stable than any supported Fe catalyst previously reported, but also has activity equivalent to that of the most active, unsupported catalysts. More importantly, the catalyst is extremely stable as evidenced by the fact that after 700 h on stream, its activity and productivity are still increasing. These catalyst properties result from the use of a novel γ-alumina support material doped with silica and pretreated at 1100°C. This unique support has a high pore volume, large pore diameter, and unusually high thermal stability. The ability to pretreat this support at 1100°C enables preparation of a material having a low number of acid sites and weak metal oxide-support interactions, all desirable properties for an FT catalyst. The second half of this dissertation investigates the effects of operating conditions including the partial pressures of CO and H2 and temperature on the deactivation by carbon of 25 wt% Co/ 0.25 wt% Pt/Al2O3 catalyst. It also reports the kinetics of the main FT reaction on this catalyst. As temperature increases, the H2 and CO orders for the main reaction (in the absence of deactivation) become more positive and more negative, respectively. A new mechanism was proposed to account for the inhibition effect of CO at high reaction temperatures, which includes H-assisted dissociation of CO to C* and OH*. Further, twelve samples of the CoPt/Al2O3 catalyst were tested over a period of 800 hours and XCO < 24%, each at a different set of CO and H2 partial pressures and temperature (220-250°C). At reaction temperature of 230°C, increasing PCO or PH2 increases the deactivation rate; possibly due to formation of polymeric carbons. The H2 and CO partial pressure orders for the deactivation rate at 230°C were found to be 1.12 and 1.43, respectively using a generalized-power-law-expression (GPLE) with limiting activity of 0.7 and 1st order deactivation. For a H2/CO of 2 (PH2 = 10 bar and PCO = 5 bar) the deactivation rate increases as process temperature increases from 220 to 250°C with an activation energy of 81 kJ/mol. However, at higher CO partial pressure (PCO = 10 bar) the deactivation rate for the Co catalyst of this study decreases with increasing temperature; this can possibly be attributed to the formation of more active cobalt sites at higher temperatures due to surface reconstruction.
182

Novel Iron Catalyst and Fixed-Bed Reactor Model for the Fischer-Tropsch Synthesis

Brunner, Kyle Martin 09 August 2012 (has links) (PDF)
This work investigates a novel iron Fischer-Tropsch (FT) catalyst preparation and describes the development of a trickle fixed-bed recycle reactor model (TFBRRM) for the FT synthesis applicable to both iron and cobalt catalysts. The iron catalyst preparation was developed using a novel solvent deficient precipitation reaction. Fifteen Fe/Cu/K/SiO2 catalysts were prepared to investigate key preparation variables including timing of promoter addition, washing or not washing after precipitation, and drying temperature. Adding promoters to starting materials before precipitation (1S) gives more uniform promoter distributions which gives higher water-gas shift activity and lower methane selectivity. Unwashed catalysts have smaller average pore and crystallite diameters (3.9-10.8 nm versus 15.3-29.5 nm) and 30% smaller pore volumes, but 65% higher rates of reaction than washed catalysts. Catalysts dried first at 100 °C have up to 50% smaller average pore and crystallite diameters, but 10-20% higher rates of reaction than catalysts dried first at 60 °C. Overall, 1S catalysts, left unwashed, and dried first at 100 °C are best suited in activity, selectivity, and stability for wax production from hydrogen-deficient feed stocks such as coal, biomass, or municipal waste. The activity of the most active catalyst of this study is greater than or equal to the activities of two of three catalysts reported in the literature. This dissertation describes in detail the TFBRRM, reports its validation, and presents results of varying fundamental, theoretically-based parameters (e.g. effective diffusivity, Prandtl number, friction factor, etc.) as well as physical process parameters (i.e. recycle ratio, pressure, flow rate, tube diameter, cooling temperature, and pellet diameter and shape). For example, the model predicts that decreasing effective diffusivity from 7.1E-9 to 2.8E-9 m^2/s results in a lower maximum temperature (from 523 to 518 K) and a longer required bed length to achieve 60% conversion of CO (from 5.7 to 8.5 m). Using the Tallmadge equation to estimate friction losses as recommended by the author results in a pressure drop 40% smaller than using the Ergun equation. Validation of the model was accomplished by matching published full-scale plant data from the SASOL Arge reactors.
183

Kinetic Experimental and Modeling Studies on Iron-Based Catalysts Promoted with Lanthana for the High-Temperature Water-Gas Shift Reaction Characterized with Operando UV-Visible Spectroscopy and for the Fischer-Tropsch Synthesis

Hallac, Basseem Bishara 01 December 2014 (has links) (PDF)
The structural and functional roles of lanthana in unsupported iron-based catalysts for the high-temperature water-gas shift reaction and Fischer-Tropsch synthesis were investigated. The performance of the catalysts with varying lanthana contents was based on their activity, selectivity, and stability. With regard to the former reaction, extent of reduction of the iron in Fe2O3/Cr2O3/CuO/La2O3 water-gas shift catalysts is a key parameter that was characterized using UV-visible spectroscopy. Minor addition of lanthana (<0.5 wt%) produces more active and stable catalysts apparently because it stabilizes the iron-chromium spinel, increases the surface area of the reduced catalysts, enhances the reduction of hematite to the magnetite active phase, and facilitates the adsorption of CO on the surface of the catalyst modeled by an adsorptive Langmuir-Hinshelwood mechanism. Statistical 95% confidence contour plots of the adsorption equilibrium constants show that water adsorbs more strongly than CO, which inhibits the reaction rate. A calibration curve that correlates the oxidation state of surface iron domains to normalized absorbance of visible light was successfully generated and applied to the water-gas shift catalysts. UV-visible studies indicated higher extent of reduction for surface Fe domains for the catalysts promoted with 1 wt% of lanthana and showed potential to be a more convenient technique for surface chemistry studies than X-ray absorption near edge spectroscopy (XANES). Lanthana addition to iron-based Fischer-Tropsch catalysts enhances the olefin-to-paraffin ratio, but decreases their activity, stability, and selectivity to liquid hydrocarbons. Adding lanthana at the expense of potassium reduces the water-gas shift selectivity and enhances the activity and stability of the catalysts. Finally, a model that simulates heat and mass transfer limitations on the particle scale for the Fischer-Tropsch reaction applicable at lab-scale suggests optimal operating and design conditions of 256°C, 30 bar, and 80 mirons are recommended for higher selectivity to liquid hydrocarbons. The model considers pressure drop, deactivation, pore diffusion, film heat transfer, and internal heat transfer when solving for the optimal conditions, and maps them as functions of design variables. This model can be up-scaled to provide guidance for optimal design of commercial-size reactors.
184

Water Footprint Of Aviation Fuel Synthesis By The Fischer Tropsch Process Using Sugar Cane Waste & Landfill Gas As Feedstocks

Menzli, Slim 01 January 2008 (has links)
The recent spikes in oil prices have spurred an already bullish demand on biofuels as a source of alternative energy. However, the unprecedented price records set simultaneously by staple food have raised high concerns about potential impacts of biofuels on the global agricultural landscape as fuel and food markets are being inextricably coupled. The revival of interest in the Fischer-Tropsch (FT) process comes into full force since it offers a promising way to produce carbon-neutral liquid fuels which are readily usable with today's existing infrastructure. The FT synthesis offers the possibility of using crop waste as feedstock instead of the crop itself thus avoiding the risk of further straining water and land resources while helping to alleviate the national energy bill and to achieve independence from foreign oil. As the airline industry is the hardest-hit sector with fuel jumping ahead of labor as the primary cost item, this thesis investigates the prospects of the FT process to transform sugar cane waste (namely bagasse, tops and green leaves) and landfill gas in order to produce kerosene (C12H26) as jet fuel for civil aviation. Established chemical correlations and thermodynamics of chemical reactions are used to assess the water footprint inherent to kerosene production using the above feedstocks at optimal conditions of temperature, pressure, catalyst and reactor type. It has been estimated that 9 to 19 gallons of water are needed for every gallon of kerosene produced. In addition, for the case of sugar cane, less land area per unit energy is required compared to ethanol production since all non-food waste of the plant can be used to produce FT fuel as opposed to ethanol which would utilize only the sugar (food) portion of the plant. This translates into a much lower water footprint for irrigation and consequently a lower water footprint overall.
185

Computer Simulation of a Plug Flow Reactor for Cobalt Catalyzed Fischer Tropsch Synthesis Using a Microkinetic Model

Jing, Yin January 2012 (has links)
No description available.
186

The Synthesis, Structure and Characterization of Extended Cobalt Ruthenium Carbonyl Compounds

Potratz, Christopher M. 03 September 2010 (has links)
No description available.
187

Gas- and solid-mixing behavior in a vibrated-bed microreactor with rapid switching of catalyst between gas atmospheres

Briggs, Robert A. January 1987 (has links)
A cold-flow vibated-bed microreactor system, operating at the room temperature and atmospheric pressure, was built and tested. The purpose of this microreactor was to simulate gas- and solid-mixing in a hot-flow microreactor system. The latter is being developed to study carbon deposition rates for continuous Fischer-Tropsch synthesis from a low H₂:CO gas with rapid switching of catalyst between gas atmospheres. The cold-flow microreactor consisted of three chambers with vertical sliding baffles that shift catalyst between the smaller, center reaction chamber and two outer chambers. The results show that the solid mixing within each chamber is essentially complete within one second after transfer of catalyst. The solid mixing was independent of gas flow and gas flow rate. Results of gas-mixing studies show that gas transfer between chambers of the microreactor was due to the transfer of gas within the interstices of transferred catalyst particles. During rapid baffle-switching intervals, complete gas mixing within each chamber occurred. The amount of gas transferred from the center chamber to each outer chamber was nearly constant and increased only slightly with feed gas rate to the center chamber. For the gas feed rates tested, the percentage of gas fed to the center chamber that transferred to each outer chamber was low, ranging from 1.2 to 4.9 percent. The results of this study are significant to the further development of the "sliding-baffle" microreactor for continuous Fischer-Tropsch synthesis, from a low H₂:CO gas. The microreactor will give important information on the rate of carbon deposition in a system that switches catalyst between two gas atmospheres. / M.S.
188

Desenvolvimento de catalisadores Co/Ru suportados na Zeólita MCM-22 destinado à aplicação na síntese de Fischer-Tropsch. / Development of Co / Ru catalysts supported on MCM-22 Zeolite intended for application in Fischer-Tropsch synthesis.

LIMA, Wellington Siqueira. 19 March 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-03-19T16:45:48Z No. of bitstreams: 1 WELLINGTON SIQUEIRA LIMA - TESE PPGEQ 2015..pdf: 2629273 bytes, checksum: eb08d915f7af848456b05135a5dca125 (MD5) / Made available in DSpace on 2018-03-19T16:45:48Z (GMT). No. of bitstreams: 1 WELLINGTON SIQUEIRA LIMA - TESE PPGEQ 2015..pdf: 2629273 bytes, checksum: eb08d915f7af848456b05135a5dca125 (MD5) Previous issue date: 2015 / CNPq / Nos últimos anos, o processo de conversão de gás natural para líquidos (GTL) via síntese de Fischer-Tropsch (SFT) recebeu interesse renovado por motivos que vão desde as vastas reservas de gás natural à excelente qualidade dos combustíveis sintéticos produzidos através desse processo. Por este motivo, se faz necessário a busca por novos catalisadores que possibilitem um aumento da seletividade a produtos de maior valor agregado na reação de Fischer-Tropsch. Sendo assim, este trabalho teve como objetivos: a preparação e caracterização do suporte zeolítico MCM-22 através do método hidrotérmico estático, numa primeira etapa. A segunda parte deste trabalho consistiu na preparação dos catalisadores a base de cobalto e rutênio como promotor da reação, obtidos por impregnação úmida e suportados na zeólita MCM-22. Por fim, avaliar o desempenho dos catalisadores na reação de Fischer-Tropsch para produção de hidrocarbonetos de cadeia longa C5+. Os catalisadores foram caracterizados pelas técnicas de: Difração de Raios X, Espectroscopia Dispersiva de Raios X, Adsorção Física de N2, Redução a Temperatura Programada e Microscopia Eletrônica de Transmissão. Os testes catalíticos foram conduzidos à temperatura fixa de 240 °C, variando as pressões entre 10 e 20 bar e a alimentação H2/CO entre 1-2, em um reator leito de lama durante um período de 6 h. Os resultados mostraram ser possível obter a zeólita MCM-22 em 7, 8, 9 e 10 dias de síntese com elevada cristalinidade e áreas superficiais. Os materiais obtidos com diferentes dias de síntese serviram de suportes para os catalisadores 20%Co0,5%RuMCM-22(7D), 20%Co0,5%RuMCM22(8D) 20%Co0,5%RuMCM-22(9D) e 20%Co0,5%RuMCM-22(10D). Após aplicação na reação de Fischer-Tropsch, estes catalisadores apresentaram alta seletividades a formação de hidrocarbonetos C5+, o que sugere um alto potencial da zeólita MCM-22 como suporte catalítico desta reação. / In recent years, the natural gas conversion to liquids (GTL) via Fischer-Tropsch synthesis (FTS) has received renewed interest for reasons ranging from the vast reserves of natural gas to the excellent quality of synthetic fuels produced by this process. For this reason, if the search is necessary for new catalysts that enable an increase in selectivity to higher value-added products in the Fischer-Tropsch reaction. Thus, this study aimed to: the preparation and characterization of zeolite support MCM-22 through the static hydrothermal method, a first step. The second part of this work consisted in the preparation of the cobalt-based catalysts and ruthenium as a promoter of the reaction, obtained by wet impregnation and supported on MCM-22 zeolite. Finally, to assess the performance of catalysts in the Fischer-Tropsch reaction for the production of long chain C5+ hydrocarbons. The catalysts were characterized by techniques: X-ray diffraction, X-ray dispersive spectroscopy, N2 adsorption of Physics, Temperature Programmed Reduction and Transmission Electron Microscopy. The catalytic tests were conducted at a fixed temperature of 240 °C, pressures ranging between 10 and 20 bar and a H2/CO feed between 1-2, in a slurry bed reactor for a period of 6h. The results proved possible to obtain MCM-22 zeolite 7, 8, 9 and 10 days of synthesis with high crystallinity and surface areas. The materials obtained with different days synthesis served as supports for catalysts 20%Co0,5%RuMCM-22(7D), 20%Co0,5%RuMCM-22(8D) 20%Co0,5%RuMCM-22(9D) e 20%Co0,5%RuMCM-22(10D). After application of the Fischer-Tropsch reaction, these catalysts showed high selectivity for the formation of C5+ hydrocarbons, which suggests a high potential of MCM-22 zeolite as a catalyst support for this reaction.
189

Avaliação dos catalisadores Fe/Cu/K/SBA-15TEOS e Fe/Cu/K/SBA-15CCA na síntese de Fischer-Tropsch. / Evaluation of the Fe / Cu / K / SBA-15TEOS and Fe / Cu / K / SBA-15CCA catalysts in the Fischer-Tropsch synthesis.

EDUARDO, Raphael da Silva. 30 April 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-04-30T16:52:44Z No. of bitstreams: 1 RAPHAEL DA SILVA EDUARDO - DISSERTAÇÃO PPGEQ 2014..pdf: 2452018 bytes, checksum: 88b5f90f5371eb8c9bb004e2e69c6bd8 (MD5) / Made available in DSpace on 2018-04-30T16:52:44Z (GMT). No. of bitstreams: 1 RAPHAEL DA SILVA EDUARDO - DISSERTAÇÃO PPGEQ 2014..pdf: 2452018 bytes, checksum: 88b5f90f5371eb8c9bb004e2e69c6bd8 (MD5) Previous issue date: 2014 / Capes / A síntese de Fischer-Tropsch, reação de polimerização de gás de síntese na presença de um catalisador, se apresenta como uma oportunidade sustentável de geração de combustíveis de alta qualidade. Diante da necessidade de desenvolvimento de novos materiais, este trabalho tem como objetivo avaliar o desempenho de catalisadores Fe/Cu/K/SBA-15TEOS e Fe/Cu/K/SBA-15CCA na síntese de Fischer-Tropsch. Os catalisadores foram preparados utilizando peneiras moleculares do tipo SBA-15 como suporte, sintetizadas com diferentes fontes de sílica (tetraortosilicato-TEOS e cinzas da casca de arroz-CCA). Os metais foram impregnados por via úmida, utilizando sais como precursores metálicos. As peneiras moleculares SBA-15TEOS e SBA-15CCA foram caracterizadas por Difração de raios X (DRX), Espectrometria de raios x de Energia Dispersiva (EDX), Microscopia Eletrônica de Varredura (MEV) e Capacidade de Adsorção Física de Nitrogênio (BET). Os catalisadores Fe/Cu/K/SBA-15TEOS e Fe/Cu/K/SBA-15CCA foram caracterizados por Difração de raios X (DRX), Espectrometria de raios x de Energia Dispersiva (EDX), Capacidade de Adsorção Física de Nitrogênio (BET) e Redução a Temperatura Programada (RTP). Pelos resultados obtidos, a peneira molecular SBA-15CCA se assemelhou à SBA-15TEOS, sendo caracterizadas como materiais mesoporosos de morfologia típica, porém com resultados distintos de área específica (490 m2/g para SBA-15TEOS e 112 m2/g para SBA-15CCA). Os catalisadores apresentaram composições de sílica, ferro, cobre e potássio nas proporções pré-definidas e boa dispersão sobre a peneira molecular, a qual manteve sua estrutura mesoporosa, porém com redução de área específica após impregnação (257,3 m2/g para Fe/Cu/K/SBA-15TEOS, 91,7 m2/g para Fe/Cu/K/SBA15CCA). Pelos resultados de RTP, foi possível verificar as faixas de temperatura de redução típicas das fases óxidas do ferro e a influência do cobre nesse processo. A avaliação catalítica na síntese de Fischer-Tropsch foi satisfatória na razão molar H2/CO de 1:1, convergindo a altas frações de hidrocarbonetos líquidos. O catalisador Fe/Cu/K/SBA-15TEOS proporcionou excelente conversão a hidrocarbonetos de frações mais pesadas C10+ (78,18%); o catalisador Fe/Cu/K/SBA-15CCA apresentou moderada conversão a hidrocarbonetos líquidos C5+ (54,47%). / The Fischer-Tropsch polymerization reaction of synthesis gas in the presence of a catalyst, is presented as a sustainable opportunity to generate high quality fuels. Given the need for development of new materials, this work aims to evaluate the performance of catalysts Fe/Cu/K/SBA-15TEOS and Fe/Cu/K/SBA-15CCA in Fischer-Tropsch synthesis. The catalysts were prepared using molecular sieves type SBA-15 as support, synthesized with different silica sources (TEOS - tetraortosilicate and rice husk ash - CCA). The metals were impregnated wet method using metal salts as precursors. The molecular sieves SBA-15TEOS and SBA-15CCA were characterized by X-ray diffraction (XRD), X-ray Spectrometry Energy Dispersive (EDX), Scanning Electron Microscopy (SEM) and Physical Adsorption Capacity of Nitrogen (BET). The Fe/Cu/K/SBA-15TEOS and Fe/Cu/K/SBA-15CCA catalysts were characterized by X-ray diffraction (XRD), X-ray Spectrometry Energy Dispersive (EDX), Physical Adsorption Capacity of Nitrogen (BET) and Temperature Programmed Reduction (TPR). From the results obtained, the molecular sieve SBA15CCA resembled the SBA-15TEOS, being characterized as mesoporous materials typical morphology, but with different results of specific area (490 m2/g for SBA15TEOS and 112 m2/g for SBA- 15CCA). The catalysts showed compositions of sílica, iron, potassium and copper in pre-defined and good dispersion of the molecular sieve, which retained its mesoporous structure proportions, but with reduced specific area after impregnation (257.3 m2/g for Fe/Cu/K/SBA-15TEOS 91.7 m2/g for Fe/Cu/K/SBA-15CCA); By the TPR results, it was possible to check the temperature ranges typical reduction of iron oxides phases and the influence of copper in this process. The catalytic reviewed in Fischer-Tropsch synthesis was satisfactory molar ratio H2/CO of 1:1, the converging high fractions of liquid hydrocarbons. The catalyst Fe/Cu/K/SBA-15TEOS provided excellent conversion to hydrocarbons heavier fractions C10+ (78.18%); Fe/Cu/K/SBA-15CCA catalyst showed moderate conversion to liquid hydrocarbons C5+ (54.47%).
190

Alternativa Drivmedel som Enhetsdrivmedel / Alternative fuel as a single fuel

Schedin, Niclas January 2013 (has links)
Fossila drivmedel står idag för en överlägsen majoritet av den totala användningen av drivmedel som dagligen förburkas. Alternativ till de fossila drivmedlen krävs för att säkerställa tillgång i framtiden. Försvarsmakten har fått uppdrag från regeringen att utforska möjligheten att övergå till att driva sina fordon på förnyelsebara bränslen.Militära organisationer strävar efter ett enhetsdrivmedel, alltså ett gemensamt drivmedel som driver samtliga fordon och enheter. Största anledningen är den förenklade logistik som kan uppnås om endast ett drivmedel används.Detta arbete har sökt efter ett alternativt drivmedel som skulle kunna användas som enhetsdrivmedel inom Försvarsmakten. Detta för att lösa problematiken med att både byta till ett förnyelsebart drivmedel och ett enhetsdrivmedel i samma fas.Slutsatserna som dragit i detta arbete är att FT-bränslen har potential att användas som enhetsdrivmedel ur ett tekniskt perspektiv. Den höga flampunkt som FT-bränslen har skulle kunna innebära att även sjöfarkoster kan använda samma drivmedel som mark- och luftfarkoster. Dock saknas i dagsläget tillräcklig tillgänglighet och framställningen är i utvecklingsfasen. / Fossil fuels currently account for the vast majority of the total amount of fuel that isconsumed globally every day. Alternatives to fossil fuels are needed to ensuresufficient supply in the future. The Swedish Armed Forces have been tasked by theGovernment to investigate and examine the possibility of operating their vehicles onrenewable fuels.Military organizations strive for the use of a single fuel concept. A single fuel conceptmeans that only one kind of fuel is used in all vehicles and machines. The majorreason for this is the simplified logistics that can be achieved if only one fuel is used.This paper has sought an alternative fuel that can also be used as a single fuel in theSwedish Armed Forces. In order to solve the problem of changing to a renewable andto a single fuel in one single step.The main conclusion drawn in this paper is that Fischer-Tropsch fuels have thepotential to be a single fuel from a technical perspective. The high flashpoint ofFischer-Tropsch fuels could mean that they might also be used in navy vessels.However, there is currently insufficient availability and production is in thedevelopment stages.

Page generated in 0.0272 seconds