Spelling suggestions: "subject:"trous noirs"" "subject:"trous voirs""
31 |
Black holes as a gateway to the quantum : classical and semi-classical explorations / Les trous noirs comme porte d'entrée vers le quantique : explorations classique et semi-classiqueDe Lorenzo, Tommaso 18 September 2018 (has links)
Depuis 1916, l'étude des Trous Noirs a soulevé des questions intrigantes. Seulement certaines ont été résolues. En effet, nous faisons face à des régimes où s’entremêlent la théorie quantique et l'espace-temps. Les TN comme porte d'entrée pour comprendre la nature quantique de la gravité. Ma thèse a été entièrement dédiée à ce domaine central de la physique théorique, avec pour but la compréhension la plus large possible des débats autour de ces questions. C'est ainsi qu'ont été produits des résultats originaux qui constituent le cœur de ce manuscrit. 1-Les surfaces de volume maximal des TN sont étudiées. Un TN astrophysique terminera sa vie avec une aire planckienne de $10^{-70} m^2$ dissimulant $10^5$ fois le volume de l'univers observable. Ceci peut avoir des conséquences sur la viabilité du "remnant scenario" comme solution au paradoxe de l'information. 2-Le scénario "trou-noir-trou-blanc" est fortement instable. Une modification minimale est proposée pour résoudre ce problème. 3-Une généralisation des quatre lois de la thermodynamique des TN est démontrée pour des cônes de lumière s'intersectant dans un espace de Minkowski. 4-On étudie des espaces conformellement plats où de telles lois acquièrent une interprétation thermodynamique standard. Le plus simple est l'espace-temps de Bertotti-Robinson, connu pour encoder la géométrie proche de l'horizon d'un TN chargé. 5-Pour peu que le bon tenseur énergie-impulsion soit identifié, les équations du champ Einstein-Cartan peuvent être retrouvées comme l'équation d'état d'un équilibre thermodynamique, comme dans le cas original de la RG. Ces résultats contribuent au débat intense sur les questions cruciales posées ci-dessus. / Since 1916 intriguing questions have arisen from the study of Black Holes (BH). Only some of them have been resolved. Indeed, we are faced with regimes where the yet unknown interplay between quantum theory and spacetime unveils. BH physics is a gateway to the quantum nature of gravity. My thesis has been completely devoted to this central domain of theoretical physics, with the guiding aim of understanding in the widest possible manner the debate around those questions. The process has produced original results that constitute the main core of the manuscript. 1- The maximal volume surfaces of evaporating BHs are studied. An astrophysical BH will end its life with an external planckian area $10^{-70} m^2$ hiding $10^5$ times the volume of our observable Universe. This can have consequences on the viability of the “remnant scenario” as solution to the BH information paradox. 2- The “black-hole-to-white-hole scenario” is analyzed. The model is shown to be strongly unstable, and a minimal resolutive modification is proposed. 3- A generalisation of the four laws of BH thermodynamics is proven for intersecting light cones in Minkowski spacetime. 4- Conformally flat spaces where such laws acquire the standard thermodynamical interpretation are studied. The simplest one is the Bertotti-Robinson spacetime, known to encode the near-horizon geometry of a charged BH. 5- It is shown that, if the correct energy-momentum tensor is identified, the Eintein-Cartan’s field equations can be recovered as a thermodynamical equilibrium equation of state just like in the GR original case. Such results contribute to the intense debate on the opening crucial questions.
|
32 |
Imagerie interférométrique infrarouge et perspectives pour l'observation interférométrique du Centre Galactique : le projet GRAVITY.Haubois, Xavier 21 April 2009 (has links) (PDF)
Le centre de la Galaxie abrite un trou noir supermassif nommé Sgr A*. Grâce à l'instrument GRAVITY, les capacités de haute résolution angulaire du VLTI permettront pour la première fois l'observation directe de l'environnement immédiat d'un tel trou noir. Pour atteindre ce but astrophysique, il est nécessaire d'obtenir des observables interférométriques de grande précision et d'appliquer des techniques de reconstruction d'images. Dans ce contexte, j'ai pu dans une première partie de ma thèse, employer différentes méthodes d'imagerie interférométrique en infrarouge suite à l'observation de la supergéante rouge Alpha Orionis (Bételgeuse) avec l'interféromètre à trois télescopes IOTA. Ces travaux ont pu notamment conduire à la mise en évidence de structures asymétriques brillantes à la surface de l'étoile qui sont très probablement de nature convective.<br /><br />La précision des observables interférométriques conditionne la qualité de la reconstruction d'image. Dans une deuxième partie, j'ai pu pratiquer une étude des performances interférométriques simulées de GRAVITY afin d'estimer la précision sur les phases et visibilités qu'il délivrera. Afin d'optimiser les futures observations de GRAVITY, il est essentiel d'avoir une idée des caractéristiques spatiales et temporelles de son objectif scientifique majeur qu'est Sgr A*. Pour cela, j'ai pu finalement participer à une campagne d'observation multi-longueurs d'onde de l'environnement de ce trou noir. A cette occasion, j'ai utilisé le mode BURST du spectro-imageur VISIR pour obtenir une haute résolution angulaire et une grande sensibilité au rayonnement de Sgr A*. Ceci m'a conduit à obtenir une limite supérieure la plus basse jamais enregistrée à 8,6 microns. Autre fait marquant, ces observations ont révélé la présence d'un sursaut d'intensité lumineuse en proche infrarouge. Si le processus de rayonnement n'est pas encore parfaitement modélisé, ces observations tendent à confirmer que les sursauts tirent leur origine d'un mouvement orbital de matière à quelques rayons de Schwarzschild de Sgr A*.<br /><br />Grâce à sa précision astrométrique de 10 micro-secondes d'angle, correspondant à un rayon de Schwarzschild à la distance du Centre Galactique, GRAVITY sera en mesure de résoudre le mouvement orbital de ces spots de matière et de comprendre la nature d'un tel rayonnement. De plus, il permettra la mesure directe de la métrique d'espace-temps et l'étude de la relativité générale en champ fort.
|
33 |
Etude de systèmes binaires d'objets compacts : étoiles à neutrons, étoiles de quarks étranges et trous noirsLimousin, Francois 09 December 2005 (has links) (PDF)
La détection des ondes gravitationnelles par les détecteurs interférométriques terrestres, tels que VIRGO ou LIGO, et par la mission spatiale LISA sera fortement facilitée par la connaissance théorique à priori du signal. On s'intéresse dans cette thèse à l'étude d'une des sources de rayonnement gravitationnel les plus importantes, à savoir les systèmes binaires d'objets compacts. Plus précisément, on considère, dans le cadre de la relativité générale, les dernières orbites de la phase de quasi-équilibre. Elles permettent, d'une part, de fournir des données initiales aussi réalistes que possible pour la phase de coalescence et, d'autre part, d'apporter de nombreuses informations sur les objets compacts émetteurs.<br /><br />Un effort est fait pour améliorer, rendre ces données initiales les plus réalistes possible d'un point de vue astrophysique. Nous avons ainsi construits les premières séquences de binaires d'étoiles de quarks étranges, et ce pour différentes équations d'état. Contrairement au cas d'étoiles à neutrons polytropiques, la séquence se termine par une instabilité dynamique. Nous avons également calculé des configurations de binaires d'étoiles à neutrons à l'aide d'une théorie sans onde allant au delà de l'approximation communément admise de métrique spatiale conformément plate. Les solutions obtenues devraient être plus précises et de meilleures conditions initiales que celles réalisées jusqu'alors. Nous avons enfin étudié, pour des systèmes d'un seul trou noir puis des trous noirs binaires, l'influence de conditions de bords aux horizons provenant du formalisme des horizons isolés et regroupnt des ingrédients de quasi-équilibre.
|
34 |
Constraining the high energy emission sources in the environment of supermassive black holes / L'origine de l'émission électromagnétique de haute énergie dans l'environnement des trous noirs supermassifsUrsini, Francesco 28 October 2016 (has links)
Des trous noirs supermassifs de plusieurs centaines de millions de masses solaires résident au centre de la plupart des galaxies massives. Dans 90% des cas, ces trous noirs sont dans état quiescent, très peu lumineux. Cependant, dans les 10% restant, des processus extrêmement violents sont observés, avec la libération d'énorme quantités d'énergie no- tamment en UV, X et gamma. On observe aussi parfois des jets puissants de matière pouvant s'étendre sur plusieurs centaines de kpc. Le coeur de ces galaxies sont appelés Noyaux Actifs de Galaxie (NAG). Ce sont parmis les objets les plus lumineux de l'univers. L'accrétion de la matière environnante sur le trou noir supermassif central est unanimement reconnue comme la source d'énergie la plus plausible pour expliquer la puissance phénoménale observée. L'énergie gravitationelle serait ainsi en partie libérée dans un disque d'accrétion, sous forme de rayonnement thermique piquant dans l'optique/UV, et en partie rayonnée en X/gamma par une couronne de plasma chaud présente dans l'environnement proche du trou noir.De nombreux phénomènes sont néanmoins encore très mal connus et beaucoup de ques- tions n'ont toujours pas de réponses satisfaisantes: quelles sont la dynamique et la structure des flots d'accrétion et d'éjection dans les NAG? Quels sont les processus radiatifs produisant le rayonnement UV/X? Quelle est l'origine des différentes composantes spectrales présentes dans ces domaines d'énergie? Cette thèse a pour objectif d'apporter de nouvelles contraintes observationnelles pour meux répondre à ces questions. Son originalité réside dans le développement et l'utilisation de modèles réalistes de Comptonisation thermique permettant d'une part de mieux contraindre les propriétés physiques et géométriques des régions d'émission UV/X et d'autre part de mieux comprendre l'origine des différentes composantes spectrales observées. Nous nous sommes notamment intéressés, au cours de cette thèse, à l'excès d'émission X-mou (<2 keV), présent dans un grand nombre de NAG, et dont l'origine est toujours inconnue.Ces travaux s'articulent autour de deux axes principaux. Le premier est l'étude spectrale détaillée de longues campagnes d'observation multi-longueur d'ondes de trois galaxies de Seyfert (NGC 5548, NGC 7213 et NGC 4593). La qualité des données ont ainsi permis de révéler les paramètres physiques (notamment la température et la profondeur optique) et géométriques de la couronne thermique à l'origine du continuum X. Le second axe porte sur l'analyse de données d'archives (en provenance du satellite XMM-Newton) d'un échantillon important de galaxies de Seyfert. Cela a permis d'apporter, cette fois ci, des contraintes plus générales sur les processus d'émission haute énergie observés dans ces objets. Ces deux approches ont notamment montré que l'exces d'émission X-mou pouvait provenir des couches supérieures chaudes du disque d'accrétion, suggérant un chauffage plus efficace en surface plutôt que dans les régions internes. / Supermassive black holes of several hundred million solar masses lie at the centre of most massive galaxies. In 90% of cases, these black holes are in quiescent, very low luminous states. Nevertheless, in the remaining 10%, extremely violent processes are seen, with the liberation of huge amounts of energy especially in the UV, X-ray and gamma-ray bands. We also sometimes observe powerful jets, extending up to several hundred kpc scales. The cores of these galaxies are called Active Galactic Nuclei (AGNs). These are among the most luminous objects in the Universe. The accretion of surrounding matter onto the central supermassive black hole is generally considered as the most likely energy source to explain the extraordinary observed luminosity. The gravitational energy would be partly liberated into an accretion disc as thermal radiation peaking in the optical/UV band, and partly radiated in the X-ray/gamma-ray band by a corona of hot plasma lying in the environment close to the black hole.However, several phenomena are still poorly understood and a number of questions lacks satisfactory answers: what are the dynamics and the structure of the accretion and ejection flows in AGNs? What are the radiative processes producing the UV/X-ray radiation? What is the origin of the different spectral components present in those energy bands? The goal of this thesis is to derive new observational constraints to better answer to these questions. Its originality resides in the development and application of realistic models of thermal Comptonization, allowing on the one hand to better constrain the physical and geometrical properties of the UV and X-ray-emitting regions, and on the other hand to better understand the origin of the different observed spectral components. In particular, we studied the excess of the soft (<2 keV) X-ray emission, seen in a great number of AGNs, and whose origin is still unknown.This work is structured along two main branches. One is the detailed spectral analysis of long, multiwavelength observational campaigns on three Seyfert galaxies (NGC 5548, NGC 7213 and NGC 4593). The quality of the data permitted to reveal the geometrical and physical parameters (in particular the temperature and optical depth) of the thermal corona producing the X-ray continuum. The second branch is based on the analysis of archival data (from the XMM-newton satellite) of a large sample of Seyfert galaxies. This allowed us to derive more general constraints on the high-energy emission processes observed in these objects. These two approaches have shown, in particular, that the soft X-ray emission excess may arise in the warm upper layers of the accretion disc, suggesting a more effective heating of the surface rather than the inner regions.
|
35 |
Au-delà de la relativité générale : certains aspects de la cosmologie quantique à boucles, des trous noirs et de l'univers sombre / Beyond Einstein’s theory of gravitation : some aspects of loop quantum cosmology, black holes and the dark universeBolliet, Boris 24 July 2017 (has links)
Dans cette thèse, nous explorons la phénoménologie de certaines extensions de la relativité générale et de la gravité quantique.Cette recherche est motivée par l’incomplétude des modèles théoriques qui décrivent le comportement de la matière aux échelles cosmologiques.Le model standard de la physique des particules et la relativité générale, combinés ensemble et avec les données expérimentales provenant des collisionneurs de particules et de l’astrophysique, conduisent a des modèles d’univers domines par de la matière invisible. De plus, selon le meilleur de ces modèles, l’univers serait présentement dans une phase d’expansion accélérée et aurait commencer son existence par une singularité spatio-temporelle : le big bang.Ainsi, la physique théorique se trouve mise au défi d’obtenir un model sans singularités et avec moins (ou aucune) matière sombre. Sur ce point, les deux dernières décennies ont étés particulièrement fructueuse : il y a maintenant un grand nombre de théories de gravité modifiée, d’énergie sombre et de gravité quantique qui sont à notre disposition.L’objectif du présent travail est de construire un cadre phénoménologique nous permettant de comparer clairement ces théories les unes aux autres et possiblement d’en réfuter certaines en se basant sur les récentes observations cosmologiques ainsi que celles qui sont encore a venir.La première partie de la thèse est dédiée aux théories de gravité modifiée et d’énergie sombre. La deuxième partie traite de la cosmologie quantique a boucles, et finalement la dernière partie présente une nouvelle façon de sonder l’expansion accélérée de l’univers via l’effet Sunyeav Zeldovich thermique. / In this thesis we explore the phenomenology of some extensions to General Relativity and quantum gravity theories.The motivation for this research lies in the incompleteness of the current theoretical models that describe the behaviour of matter on cosmological scales.The standard model of particle physics and general relativity, combined together along with experimental probes in particle colliders and astrophysics, lead to a model for our universe, which is today dominated by dark matter. Moreover, according to the best model, the universe is currently undergoing an accelerated expansion and had started its existence with a space-time singularity: the big bang.The challenge for theoretical physics is therefore to obtain a model without singularity and with less invisible matter (or none). To this respect, the last two decades have been particularly fruitful: there is a large number of competing modified gravity and dark energy theories as well as quantum gravity proposals at our disposal.The purpose of the work presented here is to set up a phenomenological framework that enables a clear comparison and possible exclusions of these new theories by confronting them to current and future observational data.The first part of the thesis is dedicated to modified gravity and dark energy models. The second part deals with loop quantum cosmology, and the last part is a presentation of a new probe for dark energy: the thermal Sunyaev Zeldovich power spectrum.
|
36 |
Formation of supermassive black holes / Formation de trous noirs supermassifsHabouzit, Mélanie 15 September 2016 (has links)
Des trous noirs supermassifs (TNs) de plusieurs millions de masses solaires occupent le centre de la plupart des galaxies proches. La découverte du TN Sagittarius A* au centre de notre galaxie, La Voie lactée, l'a confirmé. Pour autant, certaines galaxies semblent dépourvues de TNs (par exemple NGC205, M33), ou alors ne posséder un TN que de quelques milliers de masses solaires. D'autre part, des TNs dans leur forme la plus lumineuse, appelés quasars, dont la luminosité est plus importante que des centaines de fois celle d'une galaxie toute entière, ont été observés à très grand décalage spectral, lorsque l'Univers n'était alors âgé que d'un milliard d'années. Les modèles de formation des TNs doivent expliquer à la fois l'existence des TNs de faibles masses observés aujourd'hui dans les galaxies de faibles masses, mais aussi leur prodigieux homologues quasars dans l'Univers jeune. La formation des TNs pose encore de nos jours de nombreuses questions: comment se forment les TNs au début de l'histoire de l'Univers? Quelle est leur masse initiale? Quelle est la masse minimale d'une galaxie pour posséder un TN? Pour répondre à ces questions et pour étudier la formation des TNs dans le contexte de l'évolution des galaxies, nous avons utilisé des simulations hydrodynamiques cosmologiques, qui offrent l'avantage de suivre l'évolution temporelle de nombreux processus comme la formation stellaire, l'enrichissement en métaux, les mécanismes de rétroactions des TNs et des supernovae. J'ai particulièrement dirigé mes recherches sur les trois principaux modèles de formation des TNs à partir du reliquat des premières étoiles, d'amas d'étoiles, ou encore par effondrement direct. / Supermassive black holes (BHs) harboured in the center of galaxies have been confirmed with the discovery of Sagittarius A* in the center of our galaxy, the Milky Way. Recent surveys indicate that BHs of millions of solar masses are common in most local galaxies, but also that some local galaxies could be lacking BHs (e.g. NGC205, M33), or at least hosting low-mass BHs of few thousands solar masses. Conversely, massive BHs under their most luminous form are called quasars, and their luminosity can be up to hundred times the luminosity of an entire galaxy. We observe these quasars in the very early Universe, less than a billion years after the Big Bang. BH formation models therefore need to explain both the low-mass BHs that are observed in low-mass galaxies today, but also the prodigious quasars we see in the early Universe.BH formation is still puzzling today, and many questions need to be addressed: How are BHs created in the early Universe? What is their initial mass? How many BHs grow efficiently? What is the occurrence of BH formation in high redshift galaxies? What is the minimum galaxy mass to host a BH? We have used cosmological hydrodynamical simulations to capture BH formation in the context of galaxy formation and evolution. Simulations offer the advantage of following in time the evolution of galaxies, and the processes related to them, such as star formation, metal enrichment, feedback of supernovae and BHs. We have particularly focused our studies on the three main BH formation models: Pop III remnant, stellar cluster, and direct collapse models.
|
37 |
Sigma-models and Lie group symmetries in theories of gravityLindman Hornlund, Josef 01 July 2011 (has links)
En utilisant des modèles sigma non-linéaires de fonctions d'un espace-temps D-dimensionnel à un espace symétrique G/H, nous discutons de solutions de type trou noir et membrane noire dans diverses théories de gravité supersymétriques. Un espace symétrique est une variété, riemannienne ou pseudo-riemannienne, pour laquelle le tenseur de Riemann est covariantement constant. L'utilisation du dictionnaire Kac-Moody/supergravité et les techniques de réduction dimensionnelles nous permettent de décrire des trous noirs de cohomogénéité un comme des géodésiques sur G/H. Un espace-temps M, potentiellement agrémenté d'un trou noir, est de cohomogénéité un s'il existe un groupe d'isométries Iso qui agit sur M et dont le quotient M/Iso est uni-dimensionnel. L'utilisation d'algèbres de Kac-Moody dans les théories de gravité a été développé dans l'espoir de décourvrir la symétrie sous-jacente de la théorie des cordes, aussi appelée théorie M. Les techniques de réduction dimensionnelle ont depuis longtemps été utilisées pour dévoiler les symétries cachées des théories de gravité. Dans la description du modèle sigma, les trous noirs extrémaux ou branes noires sont des géodésiques nulles et correspondent à un élément nilpotent de l'algèbre de Lie g de G. Un élément X nilpotent est caractérisé par la propriété X^n = 0. En utilisant le formalisme mathématique decrivant les orbites nilpotentes, nous classifions tous les trous noirs extrémaux dans la supergravité N=2 minimale à quatre dimensions, N=2 S^3 supergravité en quatre dimensions et la supergravité minimale en cinq dimensions. De la même manière, quand G est un sous-groupe d'un groupe Kac-Moody, très-étendu ou sur-étendu, on envoie l'orbite nilpotente minimale, en utilisant le plus haut poids de g, sur des solutions supersymétriques et non-supersymétriques de type brane dans les théories de supergravité à dix et onze dimensions. Nos résultats montrent que les symétries du groupe de Lie sont très utiles de ces solutions pour classer et trouver de nouvelles solutions de type trou noir. Afin de prouver l'unicité et plusieurs autres résultats formels, nous avons développé des méthodes préliminaires dans l'espoir qu'elles puissent être utilisées à l'avenir pour l'étude des trous noirs. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
38 |
Hidden symmetries and black holes in supergravity / Symétries cachées et trous noirs en supergravitéJamsin, Ella 26 May 2010 (has links)
Upon dimensional reduction, certain supergravity theories exhibit symmetries otherwise undetected, called hidden symmetries. Not only do these symmetries teach us about the structure of the corresponding theories but moreover they provide methods to construct black hole solutions. <p><p>In this thesis, we study the hidden symmetries of supergravity theories of particular interest and how these help constructing black hole solutions in dimensions D>4. We focus on three representative cases that are the symmetries appearing upon dimensional reduction to three, two and one dimensions. They are respectively described by finite, affine and hyperbolic algebras. In the first two cases, we develop and apply solution generating techniques.<p><p>The first part of this thesis introduces the background concepts. We start with an introduction to black holes and other black objects in dimensions D>4. We present their subtleties, the known solutions and the conjectured ones. We insist on stationary axisymmetric solutions of vacuum and to the corresponding solution generating technique.<p><p>The next chapter gives an introduction to Kac-Moody algebras. These indeed play a central role in this thesis as the symmetries appearing in three, two and one dimensions are described by three types of Kac-Moody algebras called respectively finite, affine and hyperbolic.<p><p>In the second part, we first review the notion of dimensional reductions and how the hidden symmetries can be uncovered. The rest of the thesis contains three applications of these hidden symmetries.<p><p>The first two concern five-dimensional minimal supergravity. Upon dimensional reduction to three dimensions, this theory exhibits a symmetry under the exceptional finite Kac-Moody algebra g2. This 14-dimensional algebra is the smallest exceptional finite Kac-Moody algebra. We use this duality to generate solutions while focussing mainly on black strings. <p><p>After reduction to two dimensions, the symmetry becomes infinite-dimensional and is described by the affine extension of g2. Moreover, the two-dimensional theory is integrable, which allows us to develop another type of solution generating technique, hitherto applied only to vacuum gravity. In this work we generalize it to a case with matter fields.<p><p>Finally, the notion of dimensional reduction to one dimension provides the necessary intuition for the conjecture of an algebraic formulation of M-theory, candidate to the unification of all interactions, based on the hyperbolic Kac-Moody algebra e10. In the last chapter of this thesis, we study an aspect of this correspondence, namely the e10 symmetry of massive type IIA supergravity in ten dimensions.<p><p>/<p><p>On sait depuis longtemps que par un processus appelé réduction dimensionnelle, on peut faire apparaître dans certaines théories de gravitation des symétries autrement indétectées. On les appelle des symétries cachées. La mise en évidence de ces symétries non seulement nous informe sur la structure de ces théories, mais de plus elle permet d'élaborer des méthodes de construction de solutions de trous noirs. <p><p>Dans cette thèse, nous étudions les symétries cachées de certaines théories de supergravité en dimensions supérieures à quatre. Nous nous concentrons sur trois cas représentatifs que sont les symétries apparaissant après réduction à trois, deux et une dimensions. Dans les cas des symétries apparaissant à trois et à deux dimensions nous développons et appliquons des méthodes de construction de solutions. <p><p>La première partie introduit les concepts préliminaires. Nous commençons par une introduction aux trous noirs et autres objets noirs en dimensions supérieures à quatre. Nous en présentons les subtilités, les solutions connues à ce jour et celles qui ne sont encore que conjecturées. Nous insistons particulièrement sur les solutions stationnaires à symétrie axiale dans le vide et à la méthode de construction de solutions correspondante.<p><p>Le chapitre suivant présente une introduction aux algèbres de Kac-Moody. Celles-ci jouent en effet un rôle central dans cette thèse puisque les symétries apparaissant à trois, deux et une dimensions sont décrites par trois types d'algèbres de Kac-Moody appelées respectivement finies, affines et hyperboliques. <p><p>Dans la deuxième partie, nous rentrons dans le vif du sujet, en commençant par rappeler le principe des réductions dimensionnelles et la mise en évidence des différents types de symétries cachées. Les trois derniers chapitres contiennent ensuite trois applications de ces symétries cachées. <p><p>Dans deux d'entre eux, nous nous concentrons sur la théorie de supergravité minimale à cinq dimensions. Après réduction à trois dimensions, cette théorie présente un symétrie cachée sous le groupe G2 qui, avec quatorze dimensions, est le plus petit des groupes de Lie exceptionnels. Nous utilisons cette dualité pour engendrer des solutions, en nous focalisant essentiellement sur les solutions de cordes noires. <p><p>A deux dimensions, la symétrie est décrite par l'extension affine de G2. De plus, la théorie est alors complètement intégrable. Cela conduit à un autre type de méthode de construction de solutions, jusqu'alors uniquement appliquée à des théories dans le vide. Dans ce travail, nous la généralisons donc à un cas avec champs de matière. <p><p>Enfin, la notion de réduction à une dimension fournit l'intuition d'une conjecture selon laquelle la théorie M, candidate à l'unification de toutes les interactions, pourrait être reformulée en une théorie basée sur l'algèbre de Kac-Moody hyperbolique e10. Dans le dernier chapitre de cette thèse, nous étudions un aspect de cette correspondance, à savoir, la symétrie sous e10 de la supergravité massive de type IIA à dix dimensions. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
39 |
Caractérisation des amas de galaxies avec des méthodes d'apprentissage automatiqueSadikov, Maria 08 1900 (has links)
Les amas de galaxies sont les plus grandes structures gravitationnellement liées de l'Univers. Ils sont communément séparés en trois catégories, basées sur la distribution du gaz intra-amas. Ce gaz peut être très concentré vers le centre de l'amas, il peut être réparti dans l'amas de manière plutôt uniforme, ou encore il peut avoir une distribution légèrement piquée vers le centre dans un cas intermédiaire. Une autre distinction entre les trois catégories est l'interaction entre le trou noir supermassif se trouvant au centre de l'amas de galaxies et le gaz intra-amas environnant. Dans le cas de la première catégorie, lorsque le gaz est concentré au centre de l'amas, le trou noir est dit "actif". Il produit alors des jets, qui à leur tour injectent de l'énergie dans le gaz intra-amas sous forme d'ondes sonores, d'ondes de choc et de turbulence. Les amas de galaxies offrent donc une opportunité très intéressante pour étudier ce mécanisme d'échange d'énergie. Afin de mieux caractériser ces processus, il est essentiel d'avoir des méthodes robustes pour classifier les amas de galaxies selon les trois catégories. Il existe plusieurs propriétés pouvant être utilisées comme métriques de classification, mais celles-ci ne sont pas toujours en accord les unes avec les autres. Ces propriétés ont été étudiées pour des petits échantillons d'amas de galaxies, analysés de manière individuelle avec des méthodes traditionnelles. Cependant, avec le développement de puissants instruments d'observation tels que eROSITA, on s'attend à obtenir des échantillons contenant environ 100 000 amas de galaxies. Étant donné la taille de ces ensemble de données, il devient nécessaire d'avoir un moyen rapide, efficace et automatique pour les traiter. On a donc recours à l'apprentissage automatique pour accélérer l'analyse. Ce mémoire présente une analyse des propriétés du gaz intra-amas avec des méthodes d'apprentissage automatique. On se sert des simulations cosmologiques IllustrisTNG pour obtenir des images en rayons X d'amas de galaxies, à partir desquelles on construit notre ensemble de données. On s'intéresse à cinq propriétés du gaz intra-amas contenu dans les amas de galaxies, qui sont couramment utilisées comme métriques de classification: le temps de refroidissement central, la densité électronique centrale, l'excès d'entropie centrale, le paramètre de concentration de la brillance de surface et le paramètre de courbure du profil de densité. On explore les relations entre ces différentes métriques, puis on implémente un réseau de neurones qui vise à prédire leur valeur à partir d'une image en rayons X d'un amas de galaxies. Notre réseau atteint une pourcentage d'erreur moyen de 1.8% pour les prédictions de la métrique la plus performante, c'est-à-dire le temps de refroidissement central. Ensuite, afin d'estimer les incertitudes sur les résultats obtenus, on effectue une analyse probabiliste de nos prédictions à l'aide de la méthode de l'inférence sans vraisemblance. On utilise également une méthode de partitionnement de données qui rassemble les images en rayons-X en trois groupes distincts; on constate que ce regroupement corrèle fortement avec la division des mêmes images en utilisant le paramètre de concentration comme métrique de classification. L'ensemble de ce travail permet de conclure que le temps de refroidissement central et la concentration sont les métriques se prêtant le mieux à une analyse avec des méthodes d'apprentissage automatique, ainsi que de mettre en place les outils qui serviront à caractériser les futurs échantillons d'amas de galaxies. / Galaxy clusters are the largest gravitationally bound structures of the universe. They are commonly divided into three categories, based on the distribution of the intracluster gas. In one case, the gas is strongly concentrated towards the center of the cluster. In another case, it is rather uniformly dispersed through the cluster. In a third intermediate case, the distribution is slightly peaked towards the center. The three categories also differ by the interaction between the gas and the supermassive black hole located at the center of the cluster. In the first category, the black hole is said to be 'active' and it produces jets that heat up the intracluster gas through shock waves, sound waves and turbulence. The feedback mechanism from the black hole is not entirely understood, and galaxy clusters offer a valuable opportunity to study this energy transfer mechanism in more detail. Numerous properties can serve as classification metrics, but they are not always consistent with one another. Moreover, traditional methods used to extract those properties are time-consuming and have only been applied to small samples. With the advent of powerful X-ray observatories such as eROSITA, we expect to obtain large galaxy clusters datasets (~100 000). Given the size of the datasets and the number of parameters to consider, machine learning methods are needed to accelerate the data processing. This thesis presents an analysis of intracluster gas properties with machine learning techniques. We use the galaxy clusters from the IllustrisTNG cosmological simulations to create the X-ray images that make up our dataset. We study five properties of the hot gas in galaxy clusters that are commonly used as classification metrics; the central cooling time, the central electron density, the central entropy excess, the concentration of the surface brightness and the cuspiness parameter, which represents the slope of the density profile. We explore the correlations between the different metrics, and implement a neural network that predicts their values from an X-ray image of a galaxy cluster. The network achieves a mean percentage error of 1.8% on the central cooling time predictions, making it the best-performing metric. In order to get uncertainty estimates, we perform a probabilistic analysis of the network predictions using simulation-based inference. We also use a clustering approach that groups the X-ray images into three separate groups; we note that those groups are consistent with classification based on the concentration parameter. Our results show that the central cooling time and the concentration are the metrics that lend themselves the best to a machine learning analysis of galaxy cluster images. This project aims to lay the groundwork for characterizing future galaxy cluster observations.
|
40 |
Relativite Generale et champs quantiques: quelques aspects de physique des trous noirs et de cosmologie en gravite de Lovelock, espaces de Sitter et dimensions supplementairesGrain, Julien 02 October 2006 (has links) (PDF)
A l'aune d'une possible unification de la Mecanique Quantique et de la Relativite Generale, le processus d'evaporation des trous noirs est sans nul doute l'un des phenomenes privilegies pour avoir acces a des effets de gravite quantique. Apres une rapide presentation de la theorie de la gravitation d'Einstein et d'une possible extension sous forme de serie de Taylor en courbure scalaire, l'evaporation de Hawking est abordee en se focalisant sur le calcul des facteurs de corps gris, i.e. de la probabilite tunnel qu'une particule issue de la brisure des fluctuations du vide s'echappe definitivement de l'attraction gravitationnelle du trou noir. J'ai developpe une methode analytique semi-classique pour l'etude de la dynamique de champs scalaires se propageant en espace-temps statique et a symetrie spherique, ainsi qu'une methode numerique pour la determination exacte des facteurs de corps gris pour des champs de spin s=0, 1/2 et 1. Ces methodes ont ete appliquees au cas de trous noirs de Schwarzschild en theorie de Lovelock a l'ordre deux (theorie de Gauss-Bonnet) et avec dimensions supplementaires, pour ainsi aboutir a une evaluation exacte des spectres rayonnes, etape necessaire pour la verification des quatres principes de la thermodynamique des trous noirs. Dans le cadre des scenarii branaires de type Arkani-Hamed, Dimopoulos & Dvali (ADD), abaissant l'echelle de Planck a l'ordre du TeV et ouvrant ainsi la possibilite de production de trous noirs par collision de particules dans le cosmos ou aupres des futurs collisionneurs, les possibilites de contraindre le Lagrangien gravitationnel a l'aide du mecanisme d'evaporation des trous noirs ont ete abordees: les modeles ADD ne sont pas en contradiction avec les donnees cosmologiques et de rayonnement cosmique et il serait possible de distinguer la presence ou non d'un terme de Gauss-Bonnet dans le Lagrangien d'Einstein-Hilbert. La question des inhomogeneites primordiales aux petites echelles de longueur ainsi que celle de la matiere noire sont aussi abordees dans cette these, respectivement a la lumiere des trous noirs primordiaux et des theories a dimensions supplementaires.
|
Page generated in 0.043 seconds