• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 35
  • 35
  • 35
  • 16
  • 9
  • 8
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Targeting myeloid cells as a potential Chronic Lymphocytic Leukemia therapeutic strategy

Merchand Reyes, Giovanna 13 November 2020 (has links)
No description available.
12

The effect of deactivation or silencing of tumor stroma with angiogenesis inhibitor on malignancy of tumor metastases

Tachijian, Nataly January 2021 (has links)
Background: Neuroblastoma (NB) is a pediatric tumor in infants and young children. The survival rate is only around 50 percent for high-risk NB despite advanced and intense multi-modal therapy. Current research aims to find new effective treatment additional to modern therapy to improve prognosis of high-risk NB in children. As such, SU11248 may be a valuable approach for improving treatment and survival as growth factors have crucial roles in tumor growth, angiogenesis, and metastasis. Aim: The aim of this investigation was to examine tissues from SU11248 treated and nontreated tumor-bearing animals on the abundance of tumor-associated macrophages (TAMs) in metastases found on vital organs. Our hypothesis is that if SU11248 could cause “deactivation” or “silencing” of the stroma of metastases particularly by acting on stromal immune cells such as TAMs. Methods: Paraffin-embedded metastases developed in an orthotopic xenograft model in beige SCID mice were stained with a monoclonal rat anti-mouse antibody as a marker of TAMs. Morphological analysis of tissue slides, and macrophage quantification was performed using a microscope. Statistical analysis was achieved using an unpaired two tailed t-test.  Results: Macrophages were stained nicely, but the number of macrophages in the metastases were not statistically different between the vehicle treated controls and SU11248 treated metastases. Conclusion: In patients with high-risk NB, SU11248 may be a useful therapeutic supplement. We believe that further research into mechanisms that target critical factors for angiogenesis and metastasis in NB, such as TAMs, is an important step toward improving patient outcomes in high-risk NB.
13

Enhancing Immunotherapy for Cancer by Targeting Suppressive Myeloid cells

Benner, Brooke Nicole 10 September 2020 (has links)
No description available.
14

Epithelial and Stromal Ron Receptor Expression Promotes Tumor Growth in a Murine Model of Prostate Cancer

Gurusamy, Devikala 23 September 2013 (has links)
No description available.
15

RNASE L MANIPULATES MACROPHAGES IN INNATE IMMUNITY AND TUMOR GROWTH

Yi, Xin 17 July 2012 (has links)
No description available.
16

CSF1 DRIVEN TRANSCRIPTIONAL AND POST-TRANSCRIPTIONAL ALTERATIONS IN MYELOID CELLS PROMOTE METASTATIC TUMOR PROGRESSION

Mathsyaraja, Haritha 21 August 2014 (has links)
No description available.
17

The Impact of Macrophage Polarity and the Tumor Microenvironment on NK Cell Phenotype and Function

Krneta, Tamara 10 1900 (has links)
<p>NK cells play a pivotal role in tumor rejection; however, once present in the tumor microenvironment, they are characterized by decreased cytotoxicity and reduced expression of activating receptors. The mechanisms governing the inactivation of NK cells within tumors remain poorly understood. Since tumor associated macrophages (TAMs) are a highly abundant and suppressive cell type within tumors, we hypothesized that they are capable of altering the function of NK cells. Following the co-culture of alternatively activated macrophages (M2) or TAMs with NK cells we observed that the expression of the cytotoxic marker CD27 on NK cells was down-regulated as well as the ability of these cells to kill YAC-1 cells in a killing assay. We have demonstrated that the mechanism by which M2 cells inhibit NK cells is TGF-β dependent. Notably, the developmental stage of NK cells after interaction with TAMs was altered and the NK cells became phenoytpically mature and potentially exhausted (CD27<sup>low</sup>CD11b<sup>high</sup>). This prompted our interest in examining the developmental stage of NK cells from polyoma MT antigen (pyMT) transgenic mouse (MMTV-pMT) breast tumors. Interestingly, in contrast to the <em>in vitro</em> results, we have shown that NK cells isolated from pyMT tumors are developmentally immature; however maintain their maturity within the spleen. Their immature phenotype correlates well with their decreased expression of perforin, granzyme, and NKp46. Both our <em>in vitro</em> studies with TAMs and our <em>in vivo</em> developmental studies using the pyMT model demonstrate that NK cells are altered by their surroundings. A better understanding of how NK cells are modified by the tumor microenvironment will help to develop strategies aimed at bolstering immune responses against tumors.</p> / Master of Science (MSc)
18

The Diversity and Functions of Microglia/Macrophages in Neurological Disease and Glioma Microenvironment

Rajagopalan, Shanmuga Priya January 2022 (has links)
No description available.
19

Prognostic significance of macrophage invasion in hilar cholangiocarcinoma

Atanasov, Georgi, Hau, Hans-Michael, Dietel, Corinna, Benzing, Christian, Krenzien, Felix, Brandl, Andreas, Wiltberger, Georg, Matia, Ivan, Prager, Isabel, Schierle, Katrin, Robson, Simon C., Reutzel-Selke, Anja, Pratschke, Johann, Schmelzle, Moritz, Jonas, Sven 10 February 2016 (has links) (PDF)
Background: Tumor-associated macrophages (TAMs) promote tumor progression and have an effect on survival in human cancer. However, little is known regarding their influence on tumor progression and prognosis in human hilar cholangiocarcinoma. Methods: We analyzed surgically resected tumor specimens of hilar cholangiocarcinoma (n = 47) for distribution and localization of TAMs, as defined by expression of CD68. Abundance of TAMs was correlated with clinicopathologic characteristics, tumor recurrence and patients’ survival. Statistical analysis was performed using SPSS software. Results: Patients with high density of TAMs in tumor invasive front (TIF) showed significantly higher local and overall tumor recurrence (both ρ < 0.05). Furthermore, high density of TAMs was associated with decreased overall (one-year 83.6 % vs. 75.1 %; three-year 61.3 % vs. 42.4 %; both ρ < 0.05) and recurrence-free survival (one-year 93.9 % vs. 57.4 %; three-year 59.8 % vs. 26.2 %; both ρ < 0.05). TAMs in TIF and tumor recurrence, were confirmed as the only independent prognostic variables in the multivariate survival analysis (all ρ < 0.05). Conclusions: Overall survival and recurrence free survival of patients with hilar cholangiocarcinoma significantly improved in patients with low levels of TAMs in the area of TIF, when compared to those with a high density of TAMs. These observations suggest their utilization as valuable prognostic markers in routine histopathologic evaluation, and might indicate future therapeutic approaches by targeting TAMs.
20

Targeting the prostate tumor microenvironment and vasculature : the role of castration, tumor-associated macrophages and pigment epithelium-derived factor / Mikromiljö och angiogenes i prostatacancer : effekter av kastration, tumör associerade makrofager och Pigment epithelium-derived factor

Halin, Sofia January 2009 (has links)
BACKGROUND: Prostate cancer is the most common cancer among Swedish men. For patients with metastatic prostate cancer the standard therapy is castration, a treatment that initially provides symptomatic relief but unfortunately is not curative. New therapeutic targets for advanced prostate cancer are therefore needed.  Prostate cancers are composed of tumor epithelial cells as well as many non-epithelial cells such as cancer associated fibroblasts, blood vessels and inflammatory cells.  Many components of the tumor microenvironment such as tumor associated macrophages and angiogenesis have been shown to stimulate tumor progression. This thesis aims to explore mechanisms by which the local environment influences prostate tumor growth and how such mechanisms could be targeted for treatment. MATERIALS AND METHODS: We have used animal models of prostate cancer, in vitro cell culture systems and clinical materials from untreated prostate cancer patients with long follow up. Experiments were evaluated with stereological techniques, immunohistochemistry, western blotting, quantitative real-time PCR, PCR arrays and laser micro dissection. RESULTS: We found that the presence of a tumor induces adaptive changes in the surrounding non-malignant prostate tissue, and that androgen receptor negative prostate tumor cells respond to castration treatment with temporarily reduced growth when surrounded by normal castration-responsive prostate tissue. Further, we show that macrophages are important for prostate tumor growth and angiogenesis in the tumor and in the surrounding non-malignant tissue. In addition, the angiogenesis inhibitor Pigment epithelium-derived factor (PEDF) was found  to be down-regulated in metastatic rat and human prostate tumors. Over-expression of PEDF inhibited experimental prostate tumor growth, angiogenesis and metastatic growth and stimulated macrophage tumor infiltration and lymphangiogenesis. PEDF was found to be down-regulated by the prostate microenvironment and tumor necrosis factor (TNF) α. CONCLUSIONS: Our studies indicate that not only the nearby tumor microenvironment but also the surrounding non-malignant prostate tissue are important for prostate tumor growth. Both the tumor and the surrounding non-malignant prostate were characterized by increased angiogenesis and inflammatory cell infiltration. Targeting the surrounding prostate tissue with castration, targeting tumor associated macrophages, or targeting the vasculature directly using inhibitors like PEDF were all shown to repress prostate tumor growth and could prove beneficial for patients with advanced prostate cancer.

Page generated in 0.0692 seconds