Spelling suggestions: "subject:"turbulencia"" "subject:"turbulencias""
61 |
[en] LARGE EDDY SIMULATIONS OF THE THIN PLATE SEPARATION BUBBLE AT SHALLOW INCIDENCE / [pt] SIMULAÇÃO DE GRANDES ESCALAS DA BOLHA DE SEPARAÇÃO EM PLACAS FINAS A PEQUENO ÂNGULO DE INCIDÊNCIALUIZ EDUARDO BITTENCOURT SAMPAIO 26 January 2007 (has links)
[pt] Escoamentos aerodinâmicos externos sobre membranas e
aerofólios finos representam
um enorme desafio para simulações numéricas, tendo em
vista os
diversos e complexos regimes de escoamento presentes, que
incluem separa
ção da camada limite, transição da camada de mistura para
regime turbulento,
recolamento, relaminarização da camada limite, e formação
de bolhas
de recirculação primárias e secundárias. Uma maior
compreensão sobre estas
estruturas é obtida através da simulação numérica de
grandes escalas
(LES) do escoamento sobre placas planas e finas, com
ângulos de incidência
entre um e três graus e número de Reynolds superior a 105.
A necessidade
do emprego de malhas não uniformes, geralmente imposta por
escoamentos
externos, provoca instabilidades numéricas em esquemas não
dissipativos,
sendo duas possíveis soluções apresentadas nesse trabalho.
A primeira delas
é baseada num modelo sub-malha tradicional, onde a
estabilidade numérica
é alcançada através de um esquema numérico misto, no qual
o esquema
de diferenças centrais é empregado em regiões com intensas
atividades turbulentas,
enquanto que um esquema dissipativo é empregado nas regiões
onde a malha sofre grandes variações espaciais e a
atividade turbulenta
é desprezível. Uma segunda solução baseia-se num termo de
forçamento
idealizado para atenuar apenas as menores escalas. Quando
comparadas a
estudos prévios utilizando médias de Reynolds (RANS),
ambas as alternativas
se mostraram adequadas, disponibilizando resultados bem
mais precisos
para perfis de velocidade, flutuações turbulentas e
pressões médias. Em particular,
o comprimento da bolha de recirculação foi previsto com
menos de
5% de discrepância em relação a dados experimentais,
contrastando com
valores maiores que 20%, obtidos com o modelo RANS K - W / [en] Aerodynamic flows around thin airfoils and membranes are
very challenging
to simulate accurately because of complex flow structures,
including
geometry-induced separation of the boundary layer, shear
layer transition to
turbulent behavior, reattachment, relaminarization of the
boundary layer,
and formation of primary and secondary recirculation
bubbles. A physical
insight on these structures can be obtained through the
numerical Large
Eddy Simulation (LES) of the flow around a simpler
geometry, the thin flat
plate, at shallow incidences of one and three degrees and
Reynolds number
above 105, which is the focus of this investigation. In
order to avoid the numerical
instabilities associated with the mesh spreading generally
required
by such external flow, two solutions have been developed
and tested. The
first one consists of the traditional sub-grid model used
along with a mixed
numerical scheme, in which a stable but dissipative part
is active only
in turbulence-free zones where mesh is highly non-regular,
while an unstable
but non-dissipative scheme is employed in turbulence-
crytical zones,
where the mesh is as regular as possible. The second
solution, developed
and validated in the current investigation, is based on a
damping force, aimed
to eliminate the smaller scales while preserving as much
as possible
all other structures. Compared to previous investigations
using Reynolds
Average (RANS) equations, both solutions provided more
accurate and detailed
information about the flow, including velocity, pressure
and turbulent
fluctuations mean profiles, allowing a deeper physical
understanding. In particular,
the main bubble reattachement lenght was predicted within
5% of
the experimental data, while K - W RANS results were found
to disagree in
more than 20%.
|
62 |
Turbulent structure in environmental flows: effects of stratification and rotationMatulka, Anna Magdalena 19 March 2010 (has links)
Several series of experiments in stratified and in rotating/stratified decaying flows after a grid is used to stir the two layer stable fluid
brine and fresh water set up. We measure by comparing the gained potential energy with the available kinetic energy AKE, the
relative efficiency of mixing. The experiments in stratified rotating flows with grid driven turbulence were both periodic (quasi
stationary) and non-monotonic (decaying) forcing. This thesis compares experimental, numerical and field observations on the
structure and Topology of the Stratified Rotating Flows as well as their decay, the horizontal spectra changes appreciable with
slopes from 1.1 to 5, but vorticity and local circulation, and also the initial topology and forcing of the flow.
A detailed study of the vorticity decay and vortex and energy structure has been performed, the new results show that neither
stratified nor rotating flows exhibit pure 2D structures. The work parameterizes the role of the Richardson number and the Rossby
number, both in the experiments and in the ocean visualizations is very important. The conditions of vortex decay show the effects of
the internal waves in the decay turbulent conditions both for stratified and rotating flows. The parameter space (Re,Ri,Ro) has been
used to interpret many previously disconnected explanations of the 2D-3D turbulent behaviour. The comparison of numerical
simulations with experiments has allowed implementing new theoretical aspects of the interaction between waves and vortices
finding the surprising and very interesting result that these interactions depend on the level of enstrophy. This also leads to new
ways of using multifractal analysis ad intermittency in ocean environmental observations.
A large collection of SAR images obtained from three European coastal areas were used for routine satellite analysis by SAR and
other sensors, which seem very important to build seasonal databases of the dynamic conditions of ocean mixing. The topology of
the basic flow is very important and in particular the topology of the vortices and their decay which depends on ambient factors such
as wave activity, wind and currents. We find more realistic estimates of the spatial/temporal non-homogeneities (and intermittency
obtained as spatial correlations of the turbulent dissipation); these values are used to parameterize the sea surface turbulence, as
well as a laboratory experiments at a variety of scales.
Using multi-fractal geometry as well, we can establish now a theoretical pattern for the turbulence behaviour that is reflected in the
different descriptors. Vorticity evolution is smoother and different than that of scalar or tracer density. The correlation between the
local Ri and the fractal dimension detected from energy or entropy is good. Using multi-fractal geometry we can also establish
certain regions of higher local activity used to establish the geometry of the turbulence mixing that needs to be studied in detail when
interpreting the complex balance between the direct 3D Kolmogorov type cascade and the Inverse 2D Kraichnan type cascade.
|
63 |
[en] SOLIDIFICATION AND FUSION OF PURE SUBSTANCES UNDER THE INFLUENCE OF LAMINAR AND TURBULENT NATURAL CONVECTION / [es] SOLIDIFICACIÓN Y FUSIÓN DE SUSTANCIAS PURAS SOBRE LA INFLUENCIA DE CONVECCIÓN NATURAL LAMINAR Y TURBULENTA / [pt] SOLIDIFICAÇÃO E FUSÃO DE SUBSTÂNCIAS PURAS SOB A INFLUÊNCIA DA CONVECÇÃO NATURAL LAMINAR E TURBULENTALUIZ JOAQUIM CARDOSO ROCHA 27 July 2001 (has links)
[pt] Solidificação e fusão fazem parte de uma classe de
problemas transientes de transferência de calor conhecidos
como problemas de mudança de fase ou de fronteira móvel. A
solução desta classe de problemas envolve uma dificuldade
inerente ao processo que é o movimento da interface entre
as fases sólida e líquida. Este movimento está relacionado
à absorção ou remoção do calor latente na interface. Como
conseqüência a localização da interface sólido/líquido não
é conhecida a priori tornando-se parte da solução.
No presente trabalho, considera-se a mudança de fase em
regime transiente de um material puro, na presença de
convecção natural, em uma cavidade fechada bidimensional.
A interface entre as fases sólida e líquida se comporta
como um contorno bem definido com temperatura igual à
temperatura de mudança de fase do material. O material na
fase líquida é considerado um fluido Newtoniano e a
aproximação de Boussinesq é utilizada.
Tanto na região líquida, quanto na região sólida, as
propriedades termofísicas são constantes e uniformes,
porém, diferentes entre si. O sistema de coordenadas
adotado é aquele onde suas coordenadas adaptam-se ao
contorno da geometria, e considera, quando
existe movimento de fronteira e/ou interface, sua
velocidade de deslocamento.
A intensidade na qual o fluido se movimenta provoca
mudanças na forma da interface e é de fundamental
importância no fenômeno da mudança de fase. No começo do
processo de mudança de fase, o modo de transferência de
calor na fase líquida é devido somente à condução de calor.
À medida que a velocidade do fluido aumenta, o processo de
transferência de calor por convecção começa a dominar. O
escoamento ocorre no regime laminar mas eventualmente torna-
se turbulento, o que aumenta significativamente as taxas
de transferência de calor ao longo da interface. Além
disso, como as partículas fluidas se deslocam mais
rapidamente há uma melhor distribuição destas taxas ao
longo da interface, com uma diminuição em sua curvatura.
O modelo de turbulência selecionado pertence à família de
modelos k-e. O modelo k-e tradicional é utilizado no núcleo
turbulento, e um outro conjunto de equaçõesdesenvolvido a
partir de dados de simulação numérica direta, é utilizado
na região próxima às paredes. A metodologia implementada
permite determinar naturalmente a transição do regime
laminar para o turbulento.
O presente trabalho apresenta uma nova metodologia no
tratamento da interface entre as regiões sólida e líquida.
Um volume de controle de espessura zero representa a posição
da interface. Uma vez resolvida a equação do balanço
combinado de massa e energia na interface, nenhum artifício
é necessário para se avaliar sua nova posição. Devido ao
salto de massa específica na interface alguma variação no
volume total do material é esperada.
Entretanto, o modelo atual não prevê aumento no volume
total do material e algum artifício deve ser utilizado para
adicionar ou retirar massa do domínio. A utilização do
volume de controle zero na interface permite retirar ou
adicionar massa sem a necessidade de termos de fonte
adicionais. Também é utilizado o artifício de redistribuir
os pontos nodais entre as fases sólida e líquida no intuito
de não alocar muitos pontos nodais em regiões de pequenas
espessuras. A redistribuição de pontos garante um
refinamento melhor junto à interface e, possibilita a
utilização de maiores intervalos de tempo sem introduzir
dificuldade de convergência.
Os resultados numéricos são comparados a dados
experimentais e resultados numéricos para os processos de
fusão e solidificação de materiais puros.
A boa concordância com dados experimentais revela que a
metodologia apresentada resulta numa melhora na resolução
deste tipo de problemas. / [en] Solidification and fusion belong to a class of transient
heat transfer problems known as phase change problems or
moving boundary problems. The solution of this class of
problems presents an additional difficulty concerning the
movement of the interface. This movement is due to the
absorption or removal of the latent heat at the interface.
As a consequence the position of the interface is not
known, being part of the solution.
At the present work, the transient phase change of a pure
substance is considered in the presence of natural
convection in a closed two dimensional cavity.
The interface is a well-defined boundary at the phase
change temperature. The liquid phase is assumed to be
Newtonian and the Boussinesq approximation is adopted. The
properties of both liquid and solid phases are constant,
although different of each other. A non-orthogonal
coordinate system, which adapts to the geometry, is
employed. This coordinate system moves with
time to adapt to the varying interface position.
The intensity of the fluid movement promotes changes in the
interface shape, and it is extremely important for the
phase change phenomena. At the beginning of the phase
change process, the heat transfer mechanism at the liquid
phase is due only to conduction.
As the fluid velocity increases, the heat transfer by
convection begins to dominate the process. The flow is
laminar, and eventually the fluid flow becomes turbulent,
substantially increasing the heat transfer rate along the
interface. Further, since the fluid particles move
more rapidly, theses heat fluxes along the interface are
better distributed, causing a reduction of the interface
curvature.
The turbulence model selected belongs to the k-e family.
The traditional k-e é employed at the turbulent core and
another set of equations, developed based on direct
numerical simulation data, is employed at the near wall
region. The methodology is capable of determining the
transition from laminar to turbulent flow.
The present works presents a new methodology to determine
the interface between solid and liquid regions. A zero
thickness control volume represents the interface position.
Once the mass and energy balance equations are solved at
the interface, no further schemeis necessary to evaluate
its new position. The zero thickness control volume at the
interface allows the mass to be conserved at the liquid
region without the need of any special treatment, in spite
of the specific mass jump across the interface. The grid
distribution is adjusted between the liquid and solid phase
during the phase change process, in order to optimize the
grid distribution in the domain. Further, the grid
redistribution allows the use of larger time steps, without
convergence difficulties.
The numerical results are compared with experimental and
numerical data available in the literature for fusion and
solidification of pure substances. The good agreement
reveals that the presented methodology furnishes an
improved solution for this type of problems. The point
redistribution allows the specification of larger time
steps without compromising the convergence and precision. / [es] Solidificación y fusión forman parte de una clase de problemas de transferencia de calor conocidos
como problemas de cambio de fase o de frontera movil. La solución de esta clase de problemas
envuelve una dificuldad inherente al proceso: el movimiento de la interfaz entre las fases sólida y
líquida. Este movimiento está relacionado con la absorción o extracción del calor latente en la
interfaz. Como consecuencia, la localización de la interfaz sólido/líquido no se conoce a priori, por
lo
que forma parte de la solución. En el presente trabajo, se considera el cambio de fase en régimen
transitorio de un material puro, en presencia de convección natural, en una cavidad cerrada
bidimensional. La interfaz entre las fases sólida y líquida se comporta como un contorno bien
definido con temperatura igual a la temperatura de cambio de fase del material. El material en
fase
líquida es considerado un fluido Newtoniano, por lo que se utiliza la aproximación de Bousinesq.
Tanto en la región líquida como en la sólida, las propiedades termofísicas son constantes y
uniformes,
aunque diferentes entre sí. El sistema de coordenadas adoptado es aquel donde las coordenadas se
adaptan al contorno de la geometría; y considera su velocidad de deslizamiento cuando existe
movimiento de fronteira y/o interfaz. La intensidad del fluido provoca cambios en la forma de la
interfaz lo que resulta de fundamental importancia en el fenómeno del cambio de fase. Al inicio del
proceso de cambio de fase, el modo de transferencia de calor en la fase líquida se debe solamente a
la conducción de calor. A medida que la velocidad del fluido aumenta, el proceso de transferencia
de calor por convección comienza a dominar. El fujo ocurre en el régimen laminar, pero
eventualmente se vuelve turbulento, lo que aumenta significativamente las tasas de transferencia de
calor a lo largo de la interfaz. Además de esto, como las partículas fluidas se desplazan más
rapidamente, hay una mejor distribución de estas tasas a lo largo de la interfaz, con una disminución
en su curvatura. El modelo de turbulencia seleccionado pertence a la família de modelos k-y. El
modelo k-y tradicional se utiliza en el núcleo turbulento, y se desarrolla otro conjunto de ecuaciones
a
partir de datos de simulación numérica directa, que es utilizado en la región próxima a las paredes.
La metodología implementada permite determinar naturalmente la transición del régimen laminar
para el turbulento. Este trabajo presenta una nueva metodología en el tratamiento de la interfaz
entre las regiones sólida y líquida. El volúmen de control de espesura cero representa la posición de
la interfaz. Una vez resuelta la ecuación del equilibrio combinado de masa y energía en la interfaz,
no se necesita evaluar su nueva posición. Debido al salto de masa específica en la interfaz, se
espera
alguna variación en el volúmen total del material. Sin embargo, el modelo actual no prevee un
aumento en el volumen total del material y se debe utilizar cierto artificio para adicionar o retirar
masa del dominio. La utilización del volumen de control cero en la interfaz permite retirar o
adicionar
masa sin necesidad de términos de fuente adicionales. También es utilizado el artificio de
redistribuir
los puntos nodales entre las fases sólida y líquida con el objetivo de no considerar muchos puntos
nodales en regiones de pequenas espesuras. Esta redistribución garantiza un mejor refinamiento
junto a la interfaz y, posibilita la utilización de mayores intervalos de tiempo sin introducir mayores
problemas de convergencia. Los resultados numéricos son comparados con datos experimentales y
con resultados numéricos para los procesos de fusión y solidificación de materiales puros. La
concordancia con datos experimentales revela que la metodología presentada mejora la resolución
de este tipo de problemas.
|
64 |
[en] WAX DEPOSITION IN TURBULENT FLOW / [pt] DEPOSIÇÃO DE PARAFINA EM ESCOAMENTOS TURBULENTOSRAFAEL CAMEL ALBAGLI 10 May 2017 (has links)
[pt] A deposição de parafina é um fenômeno presente nos sistemas de produção de petróleo (principalmente em águas profundas devido às baixas temperaturas), consistindo na aderência de frações sólidas de hidrocarbonetos nas colunas e linhas, conduzindo à redução da área aberta ao fluxo até o eventual bloqueio. A compreensão dos mecanismos que influenciam na deposição ainda não foi totalmente alcançada. Dada a relevância deste tipo de sistema para o desenvolvimento de novos campos e a ausência de uma teoria consolidada que seja capaz de explicar a evolução e as características do depósito, a limitação de produção por este fenômeno é um dos principais problemas de garantia de escoamento. Visando a aumentar o conhecimento acerca dos fenômenos existentes no processo de deposição, e identificar os mecanismos dominantes, diferentes modelos matemáticos podem ser confrontados com dados experimentais. Geralmente, os escoamentos encontrados ao longo das linhas de produção encontram-se no regime turbulento. Dessa forma, no presente trabalho, desenvolveu-se um modelo de turbulência de duas equações k–omega, acoplado com o modelo entalpia-porosidade, no qual o depósito é considerado um meio poroso. A partir de um equilíbrio termodinâmico determinam-se as espécies que saem de solução e a sua distribuição é determinada pela equação de conservação molar. As equações de conservação foram resolvidas pelo método de volumes finitos, utilizando o esquema Power-law e Euler implícito para as discretizações espacial e temporal. Comparações com dados experimentais em um duto anular foram realizadas, apresentando boa concordância para o regime permanente, mas superestimando a espessura do depósito durante o regime transiente. Constatou-se redução de espessura do depósito com o aumento do número de Reynolds. / [en] Wax deposition is a phenomenon present in oil production systems (mainly in deep water due to the low temperatures), which consists in the adhesion of solids fractions of hydrocarbon to tubing and lines, reducing the area opened to flow until be completely blocked. The comprehension of the mechanisms that influences in the deposition has not yet been fully achieved. Given the relevance of this kind of system in new fields development and the absence of a theory able to explain the deposit s evolution and characteristics, the production limitation caused by this phenomenon is one of the main issues in flow assurance. Aiming to expand the knowledge about the phenomena that exist in deposition process and identify dominant mechanisms, different mathematical models can be compared with experimental data. The flow regime in production lines is usually turbulent. Thus, in this work, a two equation k-omega turbulence model coupled to the enthalpy-porosity model, where the deposit is a porous media, was developed. From a thermodynamic equilibrium, the species that comes out of solution are determined while their distribution are determined by each molar conservation equation. The conservations equations were solved with the finite volume method, employing the Power-law and implicit Euler schemes to handle the spatial and temporal discretization. Comparisons with experimental data in an annular duct were realized, showing good agreement in the steady state. The deposit thickness, howeve, was overestimated during the transient. The deposit thickness reduction with the Reynold number increase was verified.
|
65 |
Estudio numérico del transporte turbulento de cortinas de aire en impacto para el confinamiento de un escalar activoDemarco Bull, Rodrigo Andrés January 2008 (has links)
El presente trabajo consiste en el estudio numérico del confinamiento de un campo de alta temperatura, producido por una fuente de calor intenso, por medio de cortinas de aire tipo doble jet-doble flujo (DJ-DF), emulando las condiciones de operación de la instalación experimental construida en el marco del proyecto Fondecyt 1040498. Para este efecto se utilizó el modelo de turbulencia Reynolds Stress Model (RSM).
El diseño de un dispositivo de confinamiento de escalares activos mediante cortinas de aire y la simulación numérica de sus condiciones de operación con modelos turbulentos de orden superior han motivado este estudio, cuyo objetivo ulterior es proponer soluciones para la seguridad en túneles viales. La eficacia de confinamiento por barreras gaseosas abre las puertas para diseñar su aplicación tecnológica en el campo de la seguridad dentro de túneles viales, en los cuales se busca controlar el transporte de calor y los gases tóxicos producidos en caso de incendio.
La atención del estudió se centró tanto en las cortinas como en el comportamiento global del dispositivo. Simulaciones isotérmicas y no-isotérmicas fueron realizadas. Se efectuó una comparación del modelo RSM con los modelos k- standard y V2F. Se realizaron simulaciones no-isotérmicas considerando diferentes condiciones de operación del dispositivo, variando los parámetros relevantes que gobiernan los fenómenos estudiados (número de Reynolds, potencia térmica). Estas comparaciones fueron complementadas con mediciones de temperatura obtenidas de la instalación experimental. Por último, se varió el dominio de cálculo de las simulaciones: se realizó una simulación tridimensional del dispositivo y se realizó una simulación bidimensional, pero disminuyendo el largo de los circuitos de recirculación.
Las simulaciones permitieron caracterizar las distintas zonas de las cortinas DJ-DF. En las zonas cerca de las boquillas de salida las cortinas se comportan como doble jet, pero aguas abajo se comportan como un jet plano simple. Los términos de transferencia de calor turbulento permitieron identificar las zonas de inhibición y transferencia de calor por estos mecanismos. Se observó que las capas de mezcla y la zona de impacto favorecen de manera importante el transporte de calor turbulento. Al aumentar el número de Reynolds de las cortinas se obtuvo una disminución de la actividad turbulenta en el eje de la cortina favoreciendo así el confinamiento.
Se concluye que el modelo RSM se adapta mejor que los modelos citados, justificando el aumento de los recursos computacionales por la calidad de los resultados. Las simulaciones 3D indican cambios poco significativos en el comportamiento de las cortinas con respecto a los 2D, sin embargo, se predicen temperaturas mayores en la zona confinada debido a efectos radiativos en las paredes laterales. Las cortinas son en esencia bidimensionales y los efectos 3D se limitan a la zona próxima al penacho generado por la fuente térmica. La disminución de la longitud de los circuitos de recirculación del dispositivo no afecta la habilidad de confinamiento de las cortinas, pero produce un aumento global de la temperatura en la zona confinada. Dada la dispersión de los resultados al comparar el campo térmico experimental, etapas futuras de investigación numérica deben considerar las pérdidas de calor por las paredes (no adiabaticidad). Además, si se desea simular condiciones reales de incendio dentro del dispositivo, el modelo de radiación ocupado debe considerar el efecto radiativo que produce el humo dentro del túnel, que debería afectar la temperatura y dinámica de los flujos.
|
66 |
[pt] AVALIAÇÃO EXPERIMENTAL DOS EFEITOS DE CINTILAÇÃO NO CANAL ÓPTICO NO ESPAÇO LIVRE EM 780 NM, 1550 NM E 9100 NM / [en] EXPERIMENTAL EVALUATION OF SCINTILLATION EFFECTS IN FREE SPACE OPTICAL CHANNEL IN 780 NM, 1550 NM AND 9100 NM03 October 2008 (has links)
[pt] A comunicação óptica por laser no espaço livre é uma área
que vem despertando crescente interesse, nos últimos anos,
em função da possibilidade de resolver o problema de
difusão da informação, dando acesso de alta capacidade ao
usuário. Sistemas ópticos sem fio oferecem rapidez na sua
instalação e inicialização, além de um sistema flexível com
largura de banda equivalente à da fibra óptica, em torno de
1.5 Gbps para sistemas comerciais disponíveis
atualmente. O cerne da problemática que envolve as
aplicações de sistemas ópticos sem fio é a propagação
óptica no espaço livre. A grande diferença entre a
transmissão a laser no espaço livre e na fibra óptica é a
previsibilidade da atenuação da potência do sinal do laser
na fibra quando comparado à atmosfera. Além da
variabilidade da atenuação atmosférica devida à presença de
partículas e aerossóis, um dos fenômenos que afeta a
propagação de um feixe laser é a turbulência atmosférica,
que ocorre mesmo em condições de alta transparência.
Flutuações randômicas na temperatura do ar produzem pequenas
heterogeneidades no índice de refração ao longo do caminho
de propagação da luz. Essas alterações no índice de
refração provocam flutuações na velocidade de
fase do sinal que se propaga, causando distorção da sua
frente de onda. À medida que a frente de onda se distorce e
avança num meio com turbulência, ocorrem
mudanças aleatórias na direção do feixe gerando flutuações
na sua intensidade, contribuindo para a degradação do sinal
na recepção. Nesta tese os efeitos da cintilação,
decorrentes da turbulência atmosférica, foram avaliados por
meio de um experimento utilizando três enlaces operando no
espaço livre em três comprimentos de onda diferentes. Foi
observado que o speckle gerado pela fibra óptica de
alimentação dos transmissores de 780 nm and 1550 nm acentua
os efeitos da cintilação. / [en] Optical laser communication in free space is an area that
has been attracting increasing interest in the last years,
due to its possible capacity to resolve the
problem of information diffusion, giving higher capacity
access to users. Wireless optical systems offer speedy
installation and initialization procedures and system
flexibility, with the equivalent frequency bandwidth as
optical fiber systems, around 1.5 Gbps for the commercial
systems available nowadays. The critical aspect involving
the application of wireless optical systems is free space
optical propagation. The great difference between the laser
free space and optical fiber transmissions is the capacity
to predict the signal power attenuation that
propagates into the optical fiber, when compared to the
atmosphere propagation. Besides the variability of the
atmospheric attenuation due to the presence of
particles and aerossois, one of the phenomena that affects
laser beam propagation is atmospheric turbulence, that
occurs even in high transparency atmospheric
conditions. Random fluctuations in air temperature generate
small inhomogenities in the refraction index throughtout
the light propagation path. These changes in
the refraction index cause fluctuations in the phase speed
of the signal that is spread over this path, causing
distortion in its wave-front. As the wave-front
distorts and reaches medium with turbulence, random changes
occur in the beam direction, creating fluctuations in its
intensity, which contribute to the degradation
of the signal reception. In this thesis the effects of the
scintillation, due to atmospheric turbulence, were
experimentally evaluated using three free space
links with three different wavelengths. The experimental
results have shown that the speckle pattern generated by
the optical fiber feeding the 780 nm and 1550 nm
transmitters affected the link performance at these
wavelengths.
|
67 |
[pt] ESTUDO EXPERIMENTAL DE CHAMAS TURBULENTAS NÃO PRÉMISTURADAS DE ETANOL E AR USANDO DIAGNÓSTICO LASER / [en] TURBULENT NONPREMIXED ETHANOL-AIR FLAME EXPERIMENTAL STUDY USING LASER DIAGNOSTICSJULIO CESAR EGUSQUIZA GONI 05 November 2021 (has links)
[pt] Técnicas ópticas não intrusivas foram utilizadas para obter imagens
instantâneas e médias de chamas turbulentas não pré-misturadas de etanol e ar
estabilizadas num queimador tipo bluff-body. O espalhamento Mie, PLIF
(fluorescência induzida em um plano laser) e PIV (velocimetria por imagem de
partículas) determinaram a distribuição da densidade de gotas no spray,
intensidade da fluorescência do radical OH, para mapear a zona de reação da
chama, e o campo da velocidade do ar, respectivamente. Inicialmente
propriedades de sprays de água são comparadas quando se variam as vazões de
combustível e de ar, mostrando assimetria de duas zonas de máxima intensidade
de espalhamento Mie próximas do bocal de injeção, nos casos de maior vazão de
jato, e nos casos de menor vazão, o fechamento do filme líquido ocorre na zona
central. Em seguida foram estudados dois regimes de combustão que
correspondem a duas vazões de combustível, para os quais foram caracterizadas,
a partir do sinal de fluorescência do radical OH, a estrutura instantânea e a média
das chamas turbulentas o que permitiu identificar zonas de extinção. A
superposição das imagens médias do OH-PLIF e de espalhamento Mie permitem
evidenciar, no caso de menor vazão, que o spray é completamente envolto pela
chama, o que representa um comportamento clássico para o desenvolvimento e
uso de modelos de combustão. No caso de maior vazão, o spray interage
fortemente com o processo de combustão, sendo este um caso que se afasta das
situações clássicas. / [en] A turbulent nonpremixed ethanol spray flame is characterized through
experiments using laser diagnostics. The spray burner has been designed to
generate a stable flame with the use of a bluff body. The experiments include
spatially-resolved measurements of visualization of droplets distribution (Mie
scattering), OH fluorescence intensity, which indicates the reaction zone (Planar
laser-induced fluorescence, PLIF) and mean air-flow velocity (Particle imaging
velocimetry, PIV). Initially, water sprays results are compared corresponding to
different flow rates, showing two asymmetric maximum intensity zones of Mie
scattering, which are found near the nozzle at jet velocities. For low flow
velocity, coalescence of droplets occurs in the central zone. Then two
combustion regimes have been studied, using OH PLIF that corresponds to two
different fuel flow rates. The instantaneous and average structure of turbulent
flames, allowed identifying local extinction regions. Combined Mie
scattering/PLIF results allowed determining, in the case of smallest fuel flow
rates, that the spray is surrounded by the flame, which represents a classical
situation for the development of combustion models for turbulent flames. In the
case of larger flow rate, discrepancies from the classical behavior were observed,
since droplets interact strongly with the combustion process.
|
68 |
Balance de carbono, energía y productividad ecosistémica en la amazonía occidental empleando el método de flujos turbulentosCasimiro Soriano, Enzo Martín 03 September 2019 (has links)
Se empleó el método de covarianza de flujos turbulentos para la determinación de
flujos netos de carbono, respiración ecosistémica y productividad primaria bruta del
bosque amazónico, en la región Madre de Dios, desde noviembre de 2016 (temporada
lluviosa) hasta octubre de 2018 (temporada seca). Para ello, se utilizó un sistema
compuesto por un anemómetro sónico, un analizador de gases infrarrojo, sensores de
radiación, humedad y temperatura ubicados sobre una plataforma, a 46 metros, sobre el
dosel del bosque. La compilación, procesamiento y análisis de datos se realizó empleando
el lenguaje de programación R y los softwares comerciales Eddy Pro y TOVI.
Se registró un 78,30 % de datos válidos en un periodo efectivo de 541 días. Las
temperaturas promedio del aire oscilaron entre 21,6 y 25,6 °C y la humedad relativa
alrededor de 80%. La distribución de patrones de viento mostró una dirección
predominante hacia el NO y velocidades entre 0,1 a 1,4 ms-1. El principal indicador de
presencia de turbulencias, u*, registró un valor promedio de 0,31 m.s-1 durante el día y
0,14 m.s-1 nocturno. Durante el día, los picos de temperatura, velocidad de viento y
temperatura, así como el mínimo de %RH, se dieron entre las 12:00 y 14:00 h.
Por otra parte, los flujos de radiación de onda corta oscilaron alrededor de 300
W.m-2 y para la onda larga en -40 W.m-2, con valores más altos durante las temporadas
secas. Para la temporada húmeda 2016-2017, se registró un flujo neto de radiación de
156,98 W.m-2 y en la temporada seca, 137,76 W.m-2. En la temporada 2017-2018, la
radiación neta fue 151,20 W.m-2 en el periodo lluvioso y 139,81 W.m-2 en el periodo seco.
La Radiación Fotosintéticamente Activa (PAR) registró un promedio diario entre 300 y
400 μmol.m-2.s-1. La distribución diaria indica que el bosque recibió radiación entre las
06:00 y 18:00 h, alcanzando picos máximos alrededor del mediodía. Durante las noches,
el bosque se comportó como un emisor de radiación.
El análisis determinó un flujo de CO2 promedio diario en -5 μmol.m-2.s-1 para las
temporadas húmedas y -4 μmol.m-2.s-1 en las temporadas lluviosas. En los flujos de
almacenamiento de CO2, se registraron valores de 2,03 μmol.m-2.s-1 en las temporadas
húmedas y 1,3 μmol.m-2.s-1 en las temporadas secas. El Intercambio Neto Ecosistémico
(NEE) osciló entre -2 y -1 μmol.m-2.s-1. El comportamiento diario, influenciado por la
actividad de la capa límite, indicó que el bosque se comporta como sumidero de carbono
durante el día y emisor durante las noches. Entre las 6:00 h y 08:00 h, la generación de turbulencias por ingreso de radiación solar en la capa límite atmosférica, generó un pulso
de CO2 con un máximo entre 6 y 9 μmol.m-2.s-1.
En el análisis de flujo y balance de energía se evaluó el calor sensible (H) y calor
latente (LE). A escala mensual, H fluctuó alrededor de 20 W.m-2 y LE alrededor de 60
W.m-2, con mayores valores durante las temporadas húmedas debido a la mayor
nubosidad, disponibilidad de H2O y menor ingreso de radiación. A nivel diario, por
presencia de radiación solar, el mayor flujo de calor se registró durante el día y los picos
se alcanzaron al mediodía. El balance de energía, como correspondencia entre la radiación
neta y H+LE, mostró rectas con pendientes entre 0,70 y 0,80. La pérdida en el balance de
energía fue causado por errores en la instrumentación, muestreo, aplicación del filtro de
turbulencias y la existencia de reservas de energía verticales que no se consideraron
puesto que no fueron registradas por los equipos.
El cálculo de la respiración ecosistémica nocturna (R) se determinó de la regresión
hiperbólica cuadrática en la relación del NEE y PAR. Durante el periodo 2016-2017, R
se situó en el intervalo de 9,49 a 11,84 μmol.m-2.s-1, mientras que en 2017-2018, estuvo
entre 7,03 y 7,88 μmol.m-2.s-1. La respiración fue más intensa durante las temporadas
lluviosas debido a la promoción de la respiración heterotrófica y mayor humedad del
suelo.
La productividad primaria bruta (GPP) se calculó como la diferencia entre los
valores de NEE y R. El cálculo mostró una fijación anual neta de 44,86 toneladas de C
por hectárea en el periodo 2016-2017 y 45,92 toneladas por hectárea durante 2017-2018.
El impacto de las variables micrometorológicas y fisiológicas, incluyendo posibles
errores por falta de continuidad de datos, pudieron afectar los promedios calculados en
GPP.
Finalmente, se modeló el comportamiento de la R en función de la temperatura
máxima diaria en cada temporada. Los resultados mostraron notable aproximación a los
resultados experimentales, por lo que existe la posibilidad de ampliar este campo en la
búsqueda de predecir el comportamiento del bosque en el futuro. / The eddy covariance method was used to determine the carbon fluxes, ecosystem
respiration and gross primary productivity of a western Amazon forest, in the Madre de
Dios región in Peru and its relationship with micrometeorological parameters, from
November 2016 (rainy season) until October 2018 (dry season). A sonic anemometer,
infrared gas analyzer, radiation, humidity and a temperature sensors were used on the
platform of the SAGES flux tower, at 46 m. The compilation, processing and the analysis
of data were done using the R programming language, and the commercial software
packages Eddy Pro and TOVI.
A 78,30% of valid data was recorded over a period of 541 days, between October
2016 and October 2018. The air temperatures ranged between 21,6 and 25,6°C while the
relative humidity fluctuated around 80%. The distribution of wind patterns showed a
predominant direction towards the NW and a speed interval between 0,1 to 1,4 m.s-1. The
main evidence of turbulences, u*, recorded a mean value around 0,31 m.s-1 during day
and around 0,14 m.s-1 during night. Throughout the day, the peaks of temperature, wind
speed, temperature and the minimum of %RH were recorded between 12:00 and 14:00 h.
Short wave radiation fluxes oscillated around 300 W.m-2 and for long wave around
-40 W.m-2, with highest values in the dry seasons. For the 2016-2017 wet season, a net
radiation flow was recorded at 156,98 W.m-2 and 137,76 W.m-2 in the dry season. For
the 2017-2018 period, these values were 151,20 W.m-2 in the rainy season and 139,81
W.m-2 in the dry season. Photosyntethic Active Radiation (PAR) recorded a daily average
between 300 and 400 μmol.m-2.s-1. The daily distribution indicates that the forest received
radiation between 06:00 and 18:00 h, reaching maximum peaks around noon. During the
night, the forest behaved like a net source of radiation.
In the flux analysis, an average daily flux of CO2 was determined ranging around
-5 μmol.m-2.s-1 for the wet season and -4 μmol.m-2.s-1 for the rainy seasons. Registered
storage CO2 flux values were 2,03 μmol.m-2.s-1 in the wet seasons and 1,3 μmol.m-2.s-1 in
the dry season. The Net Ecosystemic Exchange (NEE) oscillated between -2 and -1
μmol.m-2.s-1. The daily behavior, influenced by the activity of the boundary layer,
indicated that the forest was a carbon sink during days and a constant source at nights.
Around 6:00 am, the turbulence due to the entry of solar radiation into the atmospheric
boundary layer caused a CO2 flush with a maximum between 6 and 9 μmol.m-2.s-1. In the flux and energy balance analysis, sensible heat (H) and latent heat (LE)
were studied. On a monthly scale, H fluctuated around 20 W.m-2 and LE near 60 W.m-2,
with higher values during the wet seasons due to greater cloudiness, availability of H2O
and lower incoming radiation. On a daily basis, due to the presence of solar radiation, the
highest heat flux was registered during the day and the peaks were reached at noon. The
energy balance, as a correspondence between the net radiation and H + LE, showed slopes
between 0,70 and 0,80. The loss of energy balance was caused by errors in the
instrumentation, sampling, application of the turbulence filter and the presence of vertical
energy reserves that were not considered and registered by the equipment.
The calculation of nocturnal ecosystemic respiration (R) was determined from the
quadratic hyperbolic regression of NEE vs. PAR. During the 2016-2017 period, R was in
the range of 9,49 to 11,84 μmol.m-2.s-1, while in 2017-2018, it was located between 7,03
and 7,88 μmol.m-2.s-1. The magnitude of R was more intense in the rainy seasons due to
promotion of heterotrophic respiration and higher humidity at soil level.
Gross primary productivity (GPP) was calculated as the difference of NEE and R.
The values indicated a net annual carbon fixation of 44,86 tons per hectare in the period
2016-2017 and 45,92 tons per hectare during 2017-2018. The impact of the
micrometorological and physiological variables, including possible errors due to lack of
data continuity, could had affected the averages in GPP.
Finally, the behavior of the R was modeled using the maximum daily temperature
in each season. The results showed a remarkable approximation to the experimental
results, so there is the possibility of expanding this field in the search to predict the
behavior of the forest in the future. / Tesis
|
69 |
[en] NUMERICAL INVESTIGATION OF FLOW WITHIN AND ABOVE FOREST CANOPY / [pt] INVESTIGAÇÃO NUMÉRICA DO ESCOAMENTO DENTRO E ACIMA DO DOSSEL DE FLORESTASREGINALDO ROSA COTTO DE PAULA 24 April 2008 (has links)
[pt] Neste trabalho três métodos foram utilizados para estudar
o
escoamento turbulento em regiões de florestas. No
primeiro
método, a influência da vegetação no escoamento foi
modelada através da adição de termos fontes
nas equações de quantidade de movimento, energia cinética
turbulenta e sua taxa de dissipação. No segundo, a
vegetação foi considerada um meio poroso homogêneo.
Finalmente, a camada do dossel foi representada por
modelos
3-D de árvores, consideradas como obstáculos individuais.
As equações foram resolvidas através do modelo de
turbulência k −E padrão com o programa comercial FLUENT
6.2.16. As previsões dos perfis verticais da velocidade
do vento médio, da intensidade da turbulência e dos
tensores de Reynolds, foram comparadas com dados de
experimentos de túnel de vento. Os resultados preditos
dos
perfis verticais da velocidade média e intensidade
da turbulência, na primeira e na segunda metodologias,
apresentaram boa concordância com os valores
experimentais,
porém, foram observadas discrepâncias nos perfis
modelados
do tensor de Reynolds. Entretanto, qualitativamente,
a modelagem consegue capturar o comportamento físico do
tensor de Reynolds no interior de florestas. Uma possível
explicação para este fato, é que o modelo considera a
isotropia para a viscosidade turbulenta,
implicando na incapacidade de prever qualquer forte
anisotropia do campo turbulento. Na terceira metodologia,
as previsões dos perfis verticais de velocidade
média e intensidade da turbulência apresentaram
discrepâncias em relação às medições. Porém, os perfis
verticais do tensor de Reynolds apresentaram
boa concordância. Todos os perfis verticais da velocidade
média apresentaram um ponto de inflexão na interface
vegetação-atmosfera, característico de uma camada de
mistura. Nas duas primeiras metodologias, este
padrão foi confirmado nos perfis de tangente hiperbólica
de uma camada de mistura. / [en] This work investigates different procedures in order to
study the
turbulent flow over the scale model of a forest region.
Initially, the canopy
flow was modeled by using source terms in the momentum,
turbulent kinetic
energy and its dissipation rate equations. After that, the
forest canopy was
considered a homogeneous porous medium. In the last step,
the canopy
boundary layer was modeled by artificial 3-D tree models.
This was done
by using the standard k−E turbulence model with the FLUENT
commercial
program. The modeled profiles of mean velocity, turbulence
intensity and
Reynolds stress were compared against data from wind tunnel
experiments.
In the two first methodologies, the model predictions of
the vertical profiles
of the wind speed and turbulence intensity showed good
agreement with
the experimental data. It was found that predictions of the
Reynolds
tensor were sensitive to the parameterization scheme of the
standard k −E
model. However, qualitatively, the model was capable of
predicting the
physical behavior of the Reynolds stress tensor in the
canopy flow. A
possible explanation for this behavior is the omission of
any anisotropic
eddy-viscosity effects within the k - E modelling approach.
When it was
considered the tree array, the model predictions for the
wind speed and
turbulence intensity were less satisfactory. However, it
was found that the
predicted results of the Reynolds stress tensor agreed well
with the measured
data. All the vertical profiles of the mean velocity
contained an inflection
point, something which is a necessary criterion for the
mixing layer flow.
In the tree array, the modeled results failed to the
capture this behavior
of the canopy flow. In the 2-D numerical simulations, it
was found the
characteristic hyperbolic tangent profile of a mixing layer.
|
70 |
Desarrollo de un modelo hidrodinámico tridimensional para el estudio de la propagación de ondas largas en estuarios y zonas somerasCastanedo Bárcena, Sonia 31 March 2000 (has links)
En la presente tesis se analizan los aspectos teóricos y prácticos necesarios para el desarrollo de un modelo numérico tridimensional válido para los estuarios típicos del Norte de España, cuyas características principales son la existencia de importantes gradientes de profundidad, , y de zonas que se inundan y se secan periódicamente debido al efecto de la marea astronómica.De la revisión del estado del conocimiento sobre modelado hidrodinámico tridimensional en zonas someras, se ha concluido que aunque existen varios modelos tridimensionales propuestos para estuarios, ninguno está preparado para su aplicación en los casos de estudio de esta tesis. La anterior aseveración está principalmente relacionada con tres temas fundamentales: sistema de coordenadas, representación de la turbulencia y simulación de la inundación - secado del dominio de cálculo. Se ha investigado con detalle estos aspectos y como resultado se ha desarrollado un modelo que incluye el resultado de la investigación realizada y que ha sido validado tanto con soluciones analíticas, como con datos de laboratorio y de campo.
|
Page generated in 0.0285 seconds