• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Form factors and correlation functions in N=4 super Yang-Mills theory from twistor space

Koster, Laura Rijkje Anne 26 July 2017 (has links)
Das Standardmodell der Teilchenphysik hat sich bis heute, mit Ausnahme der allgemeinen Relativitätstheorie, als erfolgreichste Theorie zur Beschreibung der Natur erwiesen. Störungstheoretische Rechnungen für bestimmte Mengen in Quantenchromodynamik (QCD) haben bisher unerreicht präzise Vorraussagen ermöglicht, die experimentell nachgewiesen wurden. Trotz dieser Erfolge gibt es Teile des Standardmodells und Energieskalen bei denen die Störungstheorie versagt und man nach Alternativen suchen muss. Vieles können wir hierbei verstehen, indem wir eine ähnliche Theorie untersuchen, die sogenannte planare N=4 Super Yang-Millstheorie in vier Dimensionen (N=4 SYM). Es existieren viele Indizien dafür, dass die Theorie exakte Lösungen zulässt. Dies lässt sich zurückführen auf die Integrabilität der Theorie, eine unendlich dimensionale Symmetriealgebra, die die Theorie stark einschränkt. Neben besagter Integrabilität besitzt diese Theorie auch andere spezielle Eigenschaften. So ist sie des am besten verstandenen Beispiels der Eich-/Gravitations Dualität durch die AdS/CFT Korrespondenz. Ausserdem sind die Streuamplituden von Gluonen auf Baumgraphenniveau in N=4 SYM die selben wie in Quantenchromodynamik. Diese Streuamplituden besitzen eine elegante Struktur und stellen sich als deutlich simpler heraus, als die dazugehörigen Feynmangraphen vermuten lassen. Tatsächlich umgehen viele der zur Berechnung von Streuamplituden entwickelten Masseschalenmethoden die Feynmangraphen, indem sie vorrübergehend manifeste Unitarität und Lokalität aufgeben und dadurch die Rechnungen stark vereinfachen. Alle diese Entwicklungen suggerieren, dass der konventionelle Formalismus der Theorie mit Hilfe der Wirkung im Minkowskiraum nicht der aufschlussreichste oder effizienteste Weg ist, die Theorie zu untersuchen. Diese Arbeit untersucht der Hypothese, ob dass stattdessen Twistorvariablen besser geeignet sind, die Theorie zu beschreiben. Der Twistorformalismus wurde zuerst von Roger Penrose eingeführt. Auf dem klassischen Level ist die holomorphe Chern-Simonstheorie im Twistorraum äquivalent zur klassischen selbst-dualen Yang-Mills Lösung in der Raumzeit. Die volle Twistorwirkung, welche eine Störung um diesen klassisch integrablen Sektor ist und durch eine Eichbedingung auf die N=4 SYM Wirkung reduziert werden kann, produziert unter einer anderen Eichbedingung alle sogenannten maximalhelizitätsverletzenden (MHV) Amplituden auf Baumgraphenniveau. Durch die Einführung eines Twistorpropagators konnten auch NkMHV Amplituden effizient beschrieben werden. In dieser Arbeit erweitern wir den Twistorformalismus um auch Größen, die sich nicht auf den Masseschalen befinden, beschreiben zu können. Wir untersuchen alle lokalen eichinvarianten zusammengesetzten Operatoren im Twistorraum und zeigen, dass sie alle Baumgraphenniveau-Formfaktoren des sogenannten MHV-Typs erzeugen. Wir erweitern diese Methode zu NMHV und öher NkMHW Level in Anlehnung an die Amplituden. Schliess lich knüpfen wir an die Integrabilität an, indem wir den ein-Schleifen Dilatationsoperator in dem skalaren Sektor der Theorie im Twistorraum berechnen. / The Standard Model of particle physics has proven to be, with the exception of general relativity, the most accurate description of nature to this day. Perturbative calculations for certain quantities in Quantum Chromo Dynamics (QCD) have led to the highest precision predictions that have been experimentally verified. However, for certain sectors and energy regimes, perturbation theory breaks down and one must look for alternative methods. Much can be learned from studying a close cousin of the standard model, called planar N = 4 super Yang-Mills theory in four dimensions (N = 4 SYM), for which a lot of evidence exists that it admits exact solutions. This exact solvability is due to its quantum integrability, a hidden infinite symmetry algebra that greatly constrains the theory, which has led to a lot of progress in solving the spectral problem. Integrability aside, this non-Abelian quantum field theory is special in yet other ways. For example, it is the most well understood example of a gauge/gravity duality via the AdS/CFT correspondence. Furthermore, at tree level the scattering amplitudes in its gluon sector coincide with those of Quantum Chromo Dynamics. These scattering amplitudes exhibit a very elegant structure and are much simpler than the corresponding Feynman diagram calculation would suggest. Indeed, many on-shell methods that have been developed for computing these scattering amplitudes circumvent the tedious Feynman calculation, by giving up manifest unitarity and locality at intermediate stages of the calculation, greatly simplifying the work. All these developments suggest that the conventional way in which the theory is presented, i.e. in terms of the well- known action on Minkowski space, might not be the most revealing or in any case not the most efficient way. This thesis investigates whether instead twistor variables provide a more suitable description. The twistor formalism was first introduced by Roger Penrose. At the classical level, a holomorphic Chern-Simons theory on twistor space is equivalent to classically integrable self-dual Yang-Mills solutions in space-time. A quantum perturbation around this classically integrable sector reduces to the conventional N = 4 SYM action by imposing a partial gauge condition. This action generates all so-called maximally helicity violating (MHV) amplitudes at tree level directly, when a different gauge was chosen. By including a twistor propagator into the formalism, also higher degree NkMHV amplitudes can be described efficiently. In this thesis we extend this twistor formalism to encompass (partially) off-shell quantities. We describe all gauge-invariant local composite operators in twistor space and show that they immediately generate all tree-level form factors of the MHV type. We use the formalism to compute form factors at NMHV and higher NkMHV level in parallel to how this was done for amplitudes. Finally, we move on to integrability by computing the one-loop dilatation operator in the scalar sector of the theory in twistor space.
2

Integrability in weakly coupled super Yang-Mills theory: form factors, on-shell methods and Q-operators

Meidinger, David 25 June 2018 (has links)
Diese Arbeit untersucht die N = 4 super-Yang-Mills-Theorie bei schwacher Kopplung, mit dem Ziel eines tieferen Verständnisses von Größen der Theorie als Zustände des integrablen Modells dass der planaren Theorie zu Grunde liegt. Wir leiten On-Shell-Diagramme für Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts aus der BCFW-Rekursion her, und untersuchen deren Eigenschaften. Dies erlaubt die Herleitung eines Graßmannschen Integrals. Für NMHV-Formfaktoren bestimmen wir die Integrationskontur. Dies erlaubt es das Integral mit einer Twistor-String-Formulierung in Beziehung zu setzen. Mit Hilfe dieser Methoden zeigen wir dass Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts und On-Shell-Funktionen mit Einfügungen beliebiger Operatoren Eigenzustände integrabler Transfermatrizen sind. Diese Identitäten verallgemeinern die Yangsche Invarianz der On-Shell-Funktionen von Amplituden. Wir zeigen weiterhin dass ein Teil der Yangschen Symmetrien erhalten bleibt. Wir erweitern unsere Untersuchung auf nichtplanare On-Shell-Funktionen und zeigen dass sie ebenfalls solche Symmetrien besitzen. Weitere Identitäten mit Transfermatrizen werden hergeleitet, und zeigen insbesondere dass Diagramme auf Zylindern als Intertwiner fungieren. Als Schritt hin zur Berechnung der Eigenzustände des integrablen Modells zu höheren Schleifenordnungen untersuchen wir Einspuroperatoren. Hier erlaubt die Quantum Spectral Curve die nichtperturbative Berechnung ihres Spektrums, liefert jedoch keine Information zu den Zustände. Die QSC kann als Q-System verstanden werden, welches durch Baxter Q-Operatoren formulierbar sein sollte. Um darauf hinzuarbeiten untersuchen wir die Q-Operatoren nichtkompakter Superspinketten und entwickeln ein effiziente Methode zur Berechnung ihrer Matrixelemente. Dies erlaubt es das gesamte Q-System durch Matrizen für jeden Anregungssektor zu realisieren, und liefert die Grundlage für perturbative Rechnungungen mit der QSC in Operatorform. / This thesis investigates weakly coupled N = 4 super Yang-Mills theory, aiming at a better understanding of various quantities as states of the integrable model underlying the planar theory. We use the BCFW recursion relations to develop on-shell diagrams for form factors of the chiral stress-tensor multiplet, and investigate their properties. The diagrams allow to derive a Graßmannian integral for these form factors. We devise the contour of this integral for NMHV form factors, and use this knowledge to relate the integral to a twistor string formulation. Based on these methods, we show that both form factors of the chiral stress-tensor multiplet as well as on-shell functions with insertions of arbitrary operators are eigenstates of integrable transfer matrices. These identities can be seen as symmetries generalizing the Yangian invariance of amplitude on-shell functions. In addition, a part of these Yangian symmetries are unbroken. We furthermore consider nonplanar on-shell functions and prove that they exhibit a partial Yangian invariance. We also derive identities with transfer matrices, and show that on-shell diagrams on cylinders can be understood as intertwiners. To make progress towards the calculation of the higher loop eigenstates of the integrable model, we consider single trace operators, for which the Quantum Spectral Curve determines their spectrum non-perturbatively. This formulation however carries no information about the states. The QSC is an algebraic Q-system, for which an operatorial form in terms of Baxter Q-operators should exist. To initiate the development such a formulation we investigate the Q-operators of non-compact super spin chains and devise efficient methods to evaluate their matrix elements. This allows to obtain the entire Q-system in terms of matrices for each magnon sector. These can be used as input data for perturbative calculations using the QSC in operatorial form.

Page generated in 0.0593 seconds