Spelling suggestions: "subject:"super yangmills theory"" "subject:"super yang_mills theory""
1 |
CHY formulae and soft theorems in N = 4 super Yang-Mills theoryHughes, Edward Fauchon January 2017 (has links)
The study of scattering amplitudes in quantum eld theories (QFTs) is equally important for high energy phenomenology and for theoretical understanding of fundamental physics. Over the last 15 years there has been an explosion of new techniques, inspired by Witten's celebrated twistor string theory [1]. The N = 4 super Yang-Mills theory (SYM) provides a playground for applying and extending these methods, heavily constrained by spacetime, internal and hidden symmetries. Recently, Cachazo, He and Yuan proposed an algebraic construction of scattering amplitudes at tree level in various QFTs, based on the solution of certain scattering equations [2]. This formula was later extended to tree-level form factors of Tr(F2 SD) in four dimensional Yang-Mills theory [3]. In this thesis we show how this result may be naturally supersymmetrised, and derived from a dual connected formulation. Moreover, we relate our results to a geometric construction of form factors via the Grassmannian [4]. Finally, we argue that ambitwistor string theory provides a natural way to lift the result to arbitrary dimensions, paving the way for loop-level results. In complementary work, it was shown that the subleading soft behaviour of tree-level amplitudes in gauge theory and gravity is universal [5{7]. This unexpected property is related to extended symmetries of the theory acting at null in nity. Moreover, the hidden structure provides additional information relevant for resummation of physical observables. In this thesis, we extend the known results to one-loop level in N = 4 SYM, arguing that IR divergences introduce anomaly terms through nite order in the regulator. We constrain these terms using dual superconformal symmetry, and derive explicit formulae in the MHV and NMHV sectors. This thesis contains documentation for two Mathematica packages, illustrating the original calculations we have performed.
|
2 |
Form factors and correlation functions in N=4 super Yang-Mills theory from twistor spaceKoster, Laura Rijkje Anne 26 July 2017 (has links)
Das Standardmodell der Teilchenphysik hat sich bis heute, mit Ausnahme der allgemeinen Relativitätstheorie, als erfolgreichste Theorie zur Beschreibung der Natur erwiesen. Störungstheoretische Rechnungen für bestimmte Mengen in Quantenchromodynamik (QCD) haben bisher unerreicht präzise Vorraussagen ermöglicht, die experimentell nachgewiesen wurden. Trotz dieser Erfolge gibt es Teile des Standardmodells und Energieskalen bei denen die Störungstheorie versagt und man nach Alternativen suchen muss. Vieles können wir hierbei verstehen, indem wir eine ähnliche Theorie untersuchen, die sogenannte planare N=4 Super Yang-Millstheorie in vier Dimensionen (N=4 SYM). Es existieren viele Indizien dafür, dass die Theorie exakte Lösungen zulässt. Dies lässt sich zurückführen auf die Integrabilität der Theorie, eine unendlich dimensionale Symmetriealgebra, die die Theorie stark einschränkt. Neben besagter Integrabilität besitzt diese Theorie auch andere spezielle Eigenschaften. So ist sie des am besten verstandenen Beispiels der Eich-/Gravitations Dualität durch die AdS/CFT Korrespondenz. Ausserdem sind die Streuamplituden von Gluonen auf Baumgraphenniveau in N=4 SYM die selben wie in Quantenchromodynamik. Diese Streuamplituden besitzen eine elegante Struktur und stellen sich als deutlich simpler heraus, als die dazugehörigen Feynmangraphen vermuten lassen. Tatsächlich umgehen viele der zur Berechnung von Streuamplituden entwickelten Masseschalenmethoden die Feynmangraphen, indem sie vorrübergehend manifeste Unitarität und Lokalität aufgeben und dadurch die Rechnungen stark vereinfachen. Alle diese Entwicklungen suggerieren, dass der konventionelle Formalismus der Theorie mit Hilfe der Wirkung im Minkowskiraum nicht der aufschlussreichste oder effizienteste Weg ist, die Theorie zu untersuchen. Diese Arbeit untersucht der Hypothese, ob dass stattdessen Twistorvariablen besser geeignet sind, die Theorie zu beschreiben. Der Twistorformalismus wurde zuerst von Roger Penrose eingeführt. Auf dem klassischen Level ist die holomorphe Chern-Simonstheorie im Twistorraum äquivalent zur klassischen selbst-dualen Yang-Mills Lösung in der Raumzeit. Die volle Twistorwirkung, welche eine Störung um diesen klassisch integrablen Sektor ist und durch eine Eichbedingung auf die N=4 SYM Wirkung reduziert werden kann, produziert unter einer anderen Eichbedingung alle sogenannten maximalhelizitätsverletzenden
(MHV) Amplituden auf Baumgraphenniveau. Durch die Einführung eines Twistorpropagators konnten auch NkMHV Amplituden effizient beschrieben werden. In dieser Arbeit erweitern wir den Twistorformalismus um auch Größen, die sich nicht auf den Masseschalen befinden, beschreiben zu können. Wir untersuchen alle lokalen eichinvarianten zusammengesetzten Operatoren im Twistorraum und zeigen, dass sie alle Baumgraphenniveau-Formfaktoren des sogenannten MHV-Typs erzeugen. Wir erweitern diese Methode zu NMHV und öher NkMHW Level in Anlehnung an die Amplituden. Schliess lich knüpfen wir an die Integrabilität an, indem wir den ein-Schleifen Dilatationsoperator in dem skalaren Sektor der Theorie im Twistorraum berechnen. / The Standard Model of particle physics has proven to be, with the exception of general relativity, the most accurate description of nature to this day. Perturbative calculations for certain quantities in Quantum Chromo Dynamics (QCD) have led to the highest precision predictions that have been experimentally verified. However, for certain sectors and energy regimes, perturbation theory breaks down and one must look for alternative methods. Much can be learned from studying a close cousin of the standard model, called planar N = 4 super Yang-Mills theory in four dimensions (N = 4 SYM), for which a lot of evidence exists that it admits exact solutions. This exact solvability is due to its quantum integrability, a hidden infinite symmetry algebra that greatly constrains the theory, which has led to a lot of progress in solving the spectral problem. Integrability aside, this non-Abelian quantum field theory is special in yet other ways. For example, it is the most well understood example of a gauge/gravity duality via the AdS/CFT correspondence. Furthermore, at tree level the scattering amplitudes in its gluon sector coincide with those of Quantum Chromo Dynamics. These scattering amplitudes exhibit a very elegant structure and are much simpler than the corresponding Feynman diagram calculation would suggest. Indeed, many on-shell methods that have been developed for computing these scattering amplitudes circumvent the tedious Feynman calculation, by giving up manifest unitarity and locality at intermediate stages of the calculation, greatly simplifying the work. All these developments suggest that the conventional way in which the theory is presented, i.e. in terms of the well- known action on Minkowski space, might not be the most revealing or in any case not the most efficient way. This thesis investigates whether instead twistor variables provide a more suitable description. The twistor formalism was first introduced by Roger Penrose. At the classical level, a holomorphic Chern-Simons theory on twistor space is equivalent to classically integrable self-dual Yang-Mills solutions in space-time. A quantum perturbation around this classically integrable sector reduces to the conventional N = 4 SYM action by imposing a partial gauge condition. This action generates all so-called maximally helicity violating (MHV) amplitudes at tree level directly, when a different gauge was chosen. By including a twistor propagator into the formalism, also higher degree NkMHV amplitudes can be described efficiently. In this thesis we extend this twistor formalism to encompass (partially) off-shell quantities. We describe all gauge-invariant local composite operators in twistor space and show that they immediately generate all tree-level form factors of the MHV type. We use the formalism to compute form factors at NMHV and higher NkMHV level in parallel to how this was done for amplitudes. Finally, we move on to integrability by computing the one-loop dilatation operator in the scalar sector of the theory in twistor space.
|
3 |
Form factors and the dilatation operator in N = 4 super Yang-Mills theory and its deformationsWilhelm, Matthias Oliver 07 March 2016 (has links)
Im ersten Teil dieser Dissertation untersuchen wir Formfaktoren von allgemeinen eichinvarianten lokalen zusammengesetzten Operatoren in der N=4 Super-Yang-Mills-Theorie bei verschiedenen Schleifenordnungen und Anzahlen externer Felder. Wir zeigen, wie Masseschalen-Methoden zu ihrer Berechnung genutzt werden können, und extrahieren aus ihnen insbesondere den Dilatationsoperator. Wir untersuchen auch die Eigenschaften der zugehörigen Rückstandsfunktionen. Des Weiteren verallgemeinern wir Masseschalen-Diagramme, Graßmann-Integrale und die integrabilitätsinspirierte Technik der R-Operatoren zur Anwendung auf Formfaktoren, wobei wir uns auf das Beispiel des chiralen Teils des Energie-Impuls-Tensors konzentrieren. Im zweiten Teil untersuchen wir die Beta- und die Gamma-i-Deformation. Bei diesen handelt es sich um die allgemeinste supersymmetrische beziehungsweise nicht-supersymmetrische feldtheoretische Deformation von N=4 Super-Yang-Mills-Theorie, welche auf der Ebene des asymptotischen Bethe-Ansatzes integrabel sind. Hierbei tritt ein neuer Effekt der endlichen Systemgröße auf, der durch Doppelspurstrukturen in der deformierten Lagrange-Dichte hervorgerufen wird und den wir Vorwickeln nennen. Während die Beta-Deformation für sich an ihren nicht-verschwindenden IR-Fixpunkten befindliche Doppelspurkopplungen konform invariant ist, weist die Gamma-i-Deformation rennende Doppelspurkopplungen ohne Fixpunkte auf, was die konforme Invarianz selbst im planaren Limes bricht. Nichtsdestotrotz erlaubt die Gamma-i-Deformation hochgradig nicht-triviale Tests der Integrabilität bei beliebig hohen Schleifenordnungen. / In the first part of this thesis, we study form factors of general gauge-invariant local composite operators in N=4 super Yang-Mills theory at various loop orders and for various numbers of external legs. We show how to use on-shell methods for their calculation and in particular extract the dilatation operator from the result. We also investigate the properties of the corresponding remainder functions. Moreover, we extend on-shell diagrams, a Graßmannian integral formulation and an integrability-based construction via R-operators to form factors, focussing on the chiral part of the stress-tensor supermultiplet as an example. In the second part, we study the beta- and the gamma-i-deformation, which were respectively shown to be the most general supersymmetric and non-supersymmetric field-theory deformations of N=4 super Yang-Mills theory that are integrable at the level of the asymptotic Bethe ansatz. For these theories, a new kind of finite-size effect occurs, which we call prewrapping and which emerges from double-trace structures that are required in the deformed Lagrangians. While the beta-deformation is conformal when the double-trace couplings are at their non-trivial IR fixed points, the gamma-i-deformation has running double-trace couplings without fixed points, which break conformal invariance even in the planar theory. Nevertheless, the gamma-i-deformation allows for highly non-trivial field-theoretic tests of integrability at arbitrarily high loop orders.
|
4 |
On the integrable structure of super Yang-Mills scattering amplitudesKanning, Nils 15 December 2016 (has links)
Die maximal supersymmetrische Yang-Mills-Theorie im vierdimensionalen Minkowski-Raum ist ein außergewöhnliches Modell der mathematischen Physik. Dies gilt vor allem im planaren Limes, in dem die Theorie integrabel zu sein scheint. So sind etwa ihre Streuamplituden auf Baumgraphenniveau Invarianten einer Yangschen Algebra, die die superkonforme Algebra psu(2,2|4) beinhaltet. Diese unendlichdimmensionale Symmetrie ist ein Kennzeichen für Integrabilität. In dieser Dissertation untersuchen wir Verbindungen zwischen solchen Amplituden und integrablen Modellen, um Grundlagen für eine effiziente, auf der Integrabilität basierende Berechnung von Amplituden zu legen. Dazu charakterisieren wir Yangsche Invarianten innerhalb der Quanten-Inverse-Streumethode, die Werkzeuge zur Behandlung integrabler Spinketten bereitstellt. In diesem Rahmen entwickeln wir Methoden zur Konstruktion Yangscher Invarianten. Wir zeigen, dass der algebraische Bethe-Ansatz für die Erzeugung von Yangschen Invarianten für u(2) anwendbar ist. Die zugehörigen Bethe-Gleichungen lassen sich leicht lösen. Unser Zugang erlaubt es zudem diese Invarianten als Zustandssummen von Vertexmodellen zu interpretieren. Außerdem führen wir ein unitäres Graßmannsches Matrixmodell zur Berechnung Yangscher Invarianten mit Oszillatordarstellungen von u(p,q|m) ein. In einem Spezialfall reduziert es sich zu dem Brezin-Gross-Witten-Model. Wir wenden eine auf Bargmann zurückgehende Integraltransformation auf unser Matrixmodell an, welche die Oszillatoren in Spinor-Helizitäts-artige Variablen überführt. Dadurch gelangen wir zu einer Weiterentwicklung der Graßmann-Integralformulierung bestimmter Amplituden. Die maßgeblichen Unterschiede sind, dass wir in der Minkowski-Signatur arbeiten und die Integrationskontur auf die unitäre Gruppenmannigfaltigkeit festgelegt ist. Wir vergleichen durch unser Integral gegebene Yangsche Invarianten mit Amplituden und kürzlich eingeführten Deformationen derselben. / The maximally supersymmetric Yang-Mills theory in four-dimensional Minkowski space is an exceptional model of mathematical physics. Even more so in the planar limit, where the theory is believed to be integrable. In particular, the tree-level scattering amplitudes were shown to be invariant under the Yangian of the superconformal algebra psu(2,2|4). This infinite-dimensional symmetry is a hallmark of integrability. In this dissertation we explore connections between these amplitudes and integrable models. Our aim is to lay foundations for an efficient integrability-based computation of amplitudes. To this end, we characterize Yangian invariants within the quantum inverse scattering method, which is an extensive toolbox for integrable spin chains. Making use of this setup, we develop methods for the construction of Yangian invariants. We show that the algebraic Bethe ansatz can be specialized to yield Yangian invariants for u(2). Our approach also allows to interpret these Yangian invariants as partition functions of vertex models. What is more, we establish a unitary Graßmannian matrix model for the construction of u(p,q|m) Yangian invariants with oscillator representations. In a special case our formula reduces to the Brezin-Gross-Witten model. We apply an integral transformation due to Bargmann to our unitary Graßmannian matrix model, which turns the oscillators into spinor helicity-like variables. Thereby we are led to a refined version of the Graßmannian integral formula for certain amplitudes. The most decisive differences are that we work in Minkowski signature and that the integration contour is fixed to be a unitary group manifold. We compare Yangian invariants defined by our integral to amplitudes and recently introduced deformations thereof.
|
5 |
Q-operators, Yangian invariance and the quantum inverse scattering methodFrassek, Rouven 02 December 2014 (has links)
Inspiriert von den integrablen Strukturen der schwach gekoppelten planaren N=4 Super-Yang-Mills-Theorie studieren wir Q-Operatoren und Yangsche Invarianten. Wir geben eine Übersicht der Quanten-Inverse-Streumethode zusammen mit der Yang-Baxter Gleichung welche zentral für diesen systematischen Zugang zu integrablen Modellen ist. Den Fokus richten wir auf rationale integrable Spinketten und Vertexmodelle. Wir besprechen einige ihrer bekannten Gemeinsamkeiten und wie sie durch Bethe-Ansatz-Methoden mit Hilfe sogenannter Q-Funktionen gelöst werden können. Der Hauptteil basiert auf den ursprünglichen Publikationen des Autors. Zuerst konstruieren wir Q-Operatoren, deren Eigenwerte zu den Q-Funktionen rationaler homogener Spinketten führen. Die Q-Operatoren werden als Spuren gewisser Monodromien von R-Operatoren eingeführt. Unsere Konstruktion erlaubt es uns die Hierarchie der kommutierenden Q-Operatoren und ihre funktionalen Beziehungen herzuleiten. Wir studieren wie der nächste-Nachbarn Hamiltonoperator, sowie höhere lokale Ladungen direkt aus den Q-Operatoren extrahiert werden können. Danach widmen wir uns der Formulierung der Yangschen Invarianzbedingung, wie sie auch im Zusammenhang mit Baumgraphen die bei der Berechnung von Streuamplituden in der N=4 Super-Yang-Mills-Theorie auftreten, innerhalb der RTT-Realisierung. Dies erlaubt es uns den algebraischen Bethe-Ansatz anzuwenden und die dazugehörigen Bethe Gleichungen herzuleiten, welche für die Konstruktion der Eigenzustände die Yangsche Invarianz aufweisen, relevant sind. Die Komponenten dieser Eigenzustände der von uns betrachteten Spinketten können außerdem als Zustandssummen gewisser zweidimensionaler Vertexmodelle angesehen werden. Zudem analysieren wir die Verbindung zwischen den Eigenzuständen und den oben genannten Baumgraphen. Schlussendlich diskutieren wir die von uns vorgelegten Ergebnisse und deren Folgen im Hinblick auf die Erforschung der planaren N=4 Super-Yang-Mills-Theorie. / Inspired by the integrable structures appearing in weakly coupled planar N=4 super Yang-Mills theory, we study Q-operators and Yangian invariants of rational integrable spin chains. We review the quantum inverse scattering method QISM along with the Yang-Baxter equation which is the key relation in this systematic approach to study integrable models. Our main interest concerns rational integrable spin chains and lattice models. We recall the relation among them and how they can be solved using Bethe ansatz methods incorporating so-called Q-functions. In order to remind the reader how the Yangian emerges in this context, an overview of its so-called RTT-realization is provided. The main part is based on the author''s original publications. Firstly, we construct Q-operators whose eigenvalues yield the Q-functions for rational homogeneous spin chains. The Q-operators are introduced as traces over certain monodromies of R-operators. Our construction allows us to derive the hierarchy of commuting Q-operators and the functional relations among them. We study how the nearest-neighbor Hamiltonian and in principle also higher local charges can be extracted from the Q-operators directly. Secondly, we formulate the Yangian invariance condition, also studied in relation to scattering amplitudes of N=4 super Yang-Mills theory, in the RTT-realization. We find that Yangian invariants can be interpreted as special eigenvectors of certain inhomogeneous spin chains. This allows us to apply the algebraic Bethe ansatz and derive the corresponding Bethe equations that are relevant to construct the invariants. We examine the connection between the Yangian invariant spin chain eigenstates whose components can be understood as partition functions of certain two-dimensional lattice models and tree-level scattering amplitudes of the four-dimensional gauge theory. Finally, we conclude and discuss some future directions and implications of our studies for planar N=4 super Yang-Mills theory.
|
6 |
Integrability in weakly coupled super Yang-Mills theory: form factors, on-shell methods and Q-operatorsMeidinger, David 25 June 2018 (has links)
Diese Arbeit untersucht die N = 4 super-Yang-Mills-Theorie bei schwacher Kopplung, mit dem Ziel eines tieferen Verständnisses von Größen der Theorie als Zustände des integrablen Modells dass der planaren Theorie zu Grunde liegt. Wir leiten On-Shell-Diagramme für Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts aus der BCFW-Rekursion her, und untersuchen deren Eigenschaften. Dies erlaubt die Herleitung eines Graßmannschen Integrals. Für NMHV-Formfaktoren bestimmen wir die Integrationskontur. Dies erlaubt es das Integral mit einer Twistor-String-Formulierung in Beziehung zu setzen. Mit Hilfe dieser Methoden zeigen wir dass Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts und On-Shell-Funktionen mit Einfügungen beliebiger Operatoren Eigenzustände integrabler Transfermatrizen sind. Diese Identitäten verallgemeinern die Yangsche Invarianz der On-Shell-Funktionen von Amplituden. Wir zeigen weiterhin dass ein Teil der Yangschen Symmetrien erhalten bleibt. Wir erweitern unsere Untersuchung auf nichtplanare On-Shell-Funktionen und zeigen dass sie ebenfalls solche Symmetrien besitzen. Weitere Identitäten mit Transfermatrizen werden hergeleitet, und zeigen insbesondere dass Diagramme auf Zylindern als Intertwiner fungieren. Als Schritt hin zur Berechnung der Eigenzustände des integrablen Modells zu höheren Schleifenordnungen untersuchen wir Einspuroperatoren. Hier erlaubt die Quantum Spectral Curve die nichtperturbative Berechnung ihres Spektrums, liefert jedoch keine Information zu den Zustände. Die QSC kann als Q-System verstanden werden, welches durch Baxter Q-Operatoren formulierbar sein sollte. Um darauf hinzuarbeiten untersuchen wir die Q-Operatoren nichtkompakter Superspinketten und entwickeln ein effiziente Methode zur Berechnung ihrer Matrixelemente. Dies erlaubt es das gesamte Q-System durch Matrizen für jeden Anregungssektor zu realisieren, und liefert die Grundlage für perturbative Rechnungungen mit der QSC in Operatorform. / This thesis investigates weakly coupled N = 4 super Yang-Mills theory, aiming at a better understanding of various quantities as states of the integrable model underlying the planar theory. We use the BCFW recursion relations to develop on-shell diagrams for form factors of the chiral stress-tensor multiplet, and investigate their properties. The diagrams allow to derive a Graßmannian integral for these form factors. We devise the contour of this integral for NMHV form factors, and use this knowledge to relate the integral to a twistor string formulation. Based on these methods, we show that both form factors of the chiral stress-tensor multiplet as well as on-shell functions with insertions of arbitrary operators are eigenstates of integrable transfer matrices. These identities can be seen as symmetries generalizing the Yangian invariance of amplitude on-shell functions. In addition, a part of these Yangian symmetries are unbroken. We furthermore consider nonplanar on-shell functions and prove that they exhibit a partial Yangian invariance. We also derive identities with transfer matrices, and show that on-shell diagrams on cylinders can be understood as intertwiners. To make progress towards the calculation of the higher loop eigenstates of the integrable model, we consider single trace operators, for which the Quantum Spectral Curve determines their spectrum non-perturbatively. This formulation however carries no information about the states. The QSC is an algebraic Q-system, for which an operatorial form in terms of Baxter Q-operators should exist. To initiate the development such a formulation we investigate the Q-operators of non-compact super spin chains and devise efficient methods to evaluate their matrix elements. This allows to obtain the entire Q-system in terms of matrices for each magnon sector. These can be used as input data for perturbative calculations using the QSC in operatorial form.
|
7 |
Superconformal quantum field theories in stringWiegandt, Konstantin 25 October 2012 (has links)
In dieser Dissertation werden Aspekte von superkonformen Quantenfeldtheorien untersucht, die für die sogenannte AdS/CFT Korrespondenz relevant sind. Die AdS/CFT Korrespondenz beschreibt eine Dualität zwischen Stringtheorien im Anti-de Sitter Raum und superkonformen Quantenfeldtheorien im Minkowskiraum. In diesem Kontext wurde die sog. Wilsonschleifen / Amplituden Dualität entdeckt, die die Übereinstimmung von n-Gluon MHV Amplituden und n-seitigen polygonalen Wilsonschleifen in der N=4 supersymmetrischen Yang-Mills (SYM) Theorie beschreibt. Im ersten Teil dieser Dissertation wird die Wilsonschleifenseite einer solchen möglichen Dualität in der N=6 superkonformen Chern-Simons (ABJM) Theorie untersucht. Das Hauptergebnis dieser Untersuchungen ist, dass der Erwartungswert der n-seitigen polygonalen Wilsonschleifen auf Einschleifenebene verschwindet, während er auf Zweischleifenebene in seiner funktionalen Form identisch zu der analogen Wilsonschleife in N=4 SYM auf Einschleifenniveau ist. Außerdem wird eine anomale konforme Wardidentität für Wilsonschleifen in Chern-Simons Theorie berechnet. Zudem werden die damit im Zusammenhang stehenden Entwicklungen für Amplituden und Korrelatoren in der ABJM Theorie diskutiert. Im zweiten Teil dieser Dissertation werden Dreipunktfunktionen von zwei geschützten Operatoren und einem Twist-Zwei Operator mit beleibigem Spin j in der N=4 SYM Theorie berechnet. Dafür werden die Indizes des Spin j Operators auf den Lichtkegel projiziert und der Korrelator wird in einem Grenzfall untersucht in dem der Impuls der bei dem Spin j Operator einfließt verschwindet. Dieser Grenzfall vereinfacht die perturbative Berechnung erheblich, da alle Dreipunktdiagramme effektiv auf Zweipunktdiagramme reduziert werden und die Abhängigkeit der Mischungsmatrix auf Einschleifenebene herausfällt. Das Ergebnis stimmt mit der Analyse der Operatorproduktentwicklung von Vierpunktfunktionen geschützter Operatoren von Dolan und Osborn aus dem Jahre 2004 überein. / In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investivated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop / amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N =4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.
|
8 |
Dualities, Symmetries and Unbroken Phases in String Theory : Probing the Composite Nature of the String / Dualiteter, Symmetrier och Obrutna Faser i Strängteori : En Utforskning av Strängens Sammansatta NaturEngquist, Johan January 2005 (has links)
The thesis treats aspects of string/M-theory in anti-de Sitter spacetimes and their supersymmetric completions. By applying the AdS/CFT correspondence, as well as models of spin chains and singletons, we try to attain a better understanding of the underlying symmetries and the unbroken phases of string/M-theory. Tensionless string/M-theory in anti-de Sitter spacetime is argued to imply a higher spin gauge symmetry enhancement and to be described by gauged sigma models of multi-singletons as well as by closed singleton strings. Vasiliev's weakly projected equations of symmetric massless higher spin gauge fields in the vector oscillator formulation is shown to follow from a deformation of the singleton model. Various four dimensional minimal as well as non-minimal supersymmetric higher spin gauge theories in the spinor formulation are examined. The minimal higher spin gauge theory based on the symmetry algebra hs(1|4) is elaborated on in an N=1 superspace, illustrating the remarkable fact that the choice of base manifold is not fixed in unfolded dynamics. The importance of the representations saturating the unitarity bounds in anti-de Sitter spacetime is stressed throughout the thesis, with particular emphasis on the singleton and the massless representations. Singletons, and hence massless states, are shown to appear as bound states on the string or p-brane and are localized at cusps. Furthermore, we examine semiclassical string solutions in Type IIB String Theory in AdS(5) x S(5) and their boundary duals in N=4 Super Yang-Mills Theory in d=4 which are constituted out of thermodynamic composite operators. By using integrable spin chain techniques and Bäcklund transformations in the field theory and in the string theory, respectively, the one-loop anomalous dimensions as well as the tower of conserved charges of the composite operators are shown to be in agreement with the energies and the tower of conserved charges associated with the dual string states.
|
Page generated in 0.0842 seconds