• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vertex Models on Random Graphs

Weigel, Martin 28 November 2004 (has links) (PDF)
Diese Arbeit befaßt sich mit der Koppelung von Vertex-Modellen an die planaren $\phi^4$-Zufallsgraphen des Zugangs zur Quantengravitation über dynamische Polygonifizierungen. Das betrachtete System hat eine doppelte Bedeutung, einerseits als die Koppelung einer konformen Feldtheorie mit zentraler Ladung $C=1$ an zweidimensionale Euklidische Quantengravitation, andererseits als Anwendung von geometrischer, "annealed" Unordnung auf ein prototypisches Modell der statistischen Mechanik. Da das Modell mit Hilfe einer großangelegten Reihe von Monte Carlo Simulationen untersucht wird, müssen entsprechende Techniken für die Simulation von dynamischen Quadrangulierungen bzw. die dualen $\phi^4$-Graphen entwickelt werden. Hierzu werden verschiedene Algorithmen und die dazugehörigen Züge vorgeschlagen und hinsichtlich ihrer Ergodizität und Effizienz untersucht. Zum Vergleich mit exakten Ergebnissen werden die Verteilung der Koordinationszahlen bzw. bestimmte Analoga davon konstruiert. Für Simulationen des $F$-Modells auf $\phi^4$-Zufallsgraphen wird ein Ordnungsparameter für den antiferroelektrischen Phasenübergang mit Hilfe einer Plakettenspindarstellung formuliert. Ausführliche "finite-size scaling"-Analysen des Kosterlitz-Thouless-Phasenübergangs des $F$-Modells auf dem Quadratgitter und auf Zufallsgraphen werden vorgestellt und die Positionen der jeweiligen kritischen Punkte sowie die dazugehörigen kritischen Exponenten werden bestimmt. Die Rückreaktion des Vertex-Modells auf die Zufallsgraphen wird in Form der Koordinationszahlverteilung, der Verteilung der "Baby-Universen" und dem daraus resultierenden String-Suszeptibilitäts-Exponenten sowie durch die geometrische Zweipunktfunktion analysiert, die eine Schätzung der intrinsischen Hausdorff-Dimension des gekoppelten Systems liefert. / In this thesis, the coupling of ice-type vertex models to the planar $\phi^4$ random graphs of the dynamical polygonifications approach to quantum gravity is considered. The investigated system has a double significance as a conformal field theory with central charge $C=1$ coupled to two-dimensional Euclidean quantum gravity and as the application of a special type of annealed connectivity disorder to a prototypic model of statistical mechanics. Since the model is analyzed by means of large-scale Monte Carlo simulations, suitable simulation techniques for the case of dynamical quadrangulations and the dual $\phi^4$ random graphs have to be developed. Different algorithms and the associated update moves are proposed and investigated with respect to their ergodicity and performance. For comparison to exact results, the co-ordination number distribution of the dynamical polygonifications model, or certain analogues of it, are constructed. For simulations of the 6-vertex $F$ model on $\phi^4$ random graphs, an order parameter for its anti-ferroelectric phase transitions is constructed in terms of a "plaquette spin" representation. Extensive finite-size scaling analyses of the Kosterlitz-Thouless point of the square-lattice and random graph $F$ models are presented and the locations of the critical points as well as the corresponding critical exponents are determined. The back-reaction of the coupled vertex model on the random graphs is investigated by an analysis of the co-ordination number distribution, the distribution of "baby universes" and the string susceptibility exponent as well as the geometric two-point function, yielding an estimate for the internal Hausdorff dimension of the coupled system.
2

Ansatz de Bethe algébrico com fronteiras triangulares

Pimenta, Rodrigo Alves 26 May 2014 (has links)
Made available in DSpace on 2016-06-02T20:15:31Z (GMT). No. of bitstreams: 1 5872.pdf: 509530 bytes, checksum: 496d8919c2fd01cb49ba79b80563de69 (MD5) Previous issue date: 2014-05-26 / Universidade Federal de Minas Gerais / In this work we study vertex models with non-diagonal boundaries, characterized by reection matrices with an upper triangular form. By means of an extension of the algebraic Bethe ansatz, we construct generalized Bethe states as well as the respective eigenvalues for two classes of models: six and nineteen vertex models. As usual, in both cases the exact solution is given in terms of the Bethe equations. / Neste trabalho estudamos modelos de vértices com fronteiras não-diagonais, caracterizadas por matrizes de reflexão com estrutura triangular. Por meio de uma extensão do ansatz de Bethe algébrico usual, construímos estados de Bethe generalizados e os respectivos autovalores para duas classes de modelos: seis e dezenove vértices. Como usual, em ambos os casos a solução exata é dada em termos das equações de Bethe.
3

Vertex model approaches to epithelial tissues in developmental systems

Smith, Aaron January 2012 (has links)
The purpose of this thesis is to develop a vertex model framework that can be used to perform computational experiments related to the dynamics of epithelial tissues in developmental systems. We focus on three example systems: the Drosophila wing imaginal disc, the Drosophila epidermis and the visceral endoderm of the mouse embryo. Within these systems, key questions pertaining to size-control mechanisms and coordination of cell migration remain unanswered and are amenable to computational testing. The vertex model presented here builds upon existing frameworks in three key ways. Firstly, we include novel force terms, representing, for example, the reaction of a cell to being compressed and its shape becoming distorted during a highly dynamic process such as cell migration. Secondly, we incorporate a model of diffusing morphogenetic growth factors within the vertex framework, using an arbitrary Lagrangian-Eulerian formulation of the diffusion equation and solving with the finite-element method (FEM). Finally, we implement the vertex model on the surface of an ellipsoid, in order to simulate cell migration in the mouse embryo. Throughout this thesis, we validate our model by running simple simulations. We demonstrate convergence properties of the FEM scheme and discuss how the time taken to solve the system scales with tissue size. The model is applied to biological systems and its utility demonstrated in several contexts. We show that when growth is dependent on morphogen concentration in the Drosophila wing disc, proliferation occurs preferentially in regions of high concentration. In the Drosophila epidermis, we show that a recently proposed mechanism of compartment size-control, in which a growth-factor is released in limited amounts, is viable. Finally, we examine the phenomenon of rosettes in the mouse embryo, which occur when five or more cells meet at a common vertex. We show, by running simulations both with and without rosettes, that they are crucial facilitators of ordered migration, and are thus critical in the patterning of the early embryo.
4

Ensaios analíticos e numéricos de processos estocásticos unidimensionais / Analytic and numeric essays on one-dimensional stochastic processes

Ferreira, Anderson Augusto 31 March 2009 (has links)
Nesta presente tese, abordaremos três problemas sobre processos estocásticos unidimensionais governados pela equação mestra. Através do Ansatz do Produto Matricial (MPA) determinaremos as condições suficientes para garantir a integrabilidade de um novo processo de difusão num meio com impurezas. Investigando o espectro de tal modelo, computaremos o expoente crítico z que determina como os observáveis atingem o estado estacionário. Em seguida, estudaremos o clássico modelo de 6-vértices bidimensional definido na matriz de transferência diagonal-diagonal, como um modelo de trafego unidimensional com dinâmica síncrona e assíncrona. E para concluir nosso trabalho, investigaremos alguns modelos de processos de contato com difusão, utilizando a teoria de Campo Médio em Cluster. / In this thesis, we discuss three problems on dimensional stochastic processes governed by master equation. By Product Matrix Ansatz (MPA) we determine the conditions sufficient to ensure integrability of a new process of diffusion in a medium with impurities. Investigating the spectrum of this model, we compute the critical exponent z that determines how the observable flow to stationary state. In the folowing, we study the classical 6-vertex model defined in two-dimensional diagonal-diagonal matrix transfer as a unidimensional model of traffic with synchronous and asynchronous dinamics. And to finish our work, we study models of diffusion processes of contact, using the theory of Cluster Mean-Field
5

Ensaios analíticos e numéricos de processos estocásticos unidimensionais / Analytic and numeric essays on one-dimensional stochastic processes

Anderson Augusto Ferreira 31 March 2009 (has links)
Nesta presente tese, abordaremos três problemas sobre processos estocásticos unidimensionais governados pela equação mestra. Através do Ansatz do Produto Matricial (MPA) determinaremos as condições suficientes para garantir a integrabilidade de um novo processo de difusão num meio com impurezas. Investigando o espectro de tal modelo, computaremos o expoente crítico z que determina como os observáveis atingem o estado estacionário. Em seguida, estudaremos o clássico modelo de 6-vértices bidimensional definido na matriz de transferência diagonal-diagonal, como um modelo de trafego unidimensional com dinâmica síncrona e assíncrona. E para concluir nosso trabalho, investigaremos alguns modelos de processos de contato com difusão, utilizando a teoria de Campo Médio em Cluster. / In this thesis, we discuss three problems on dimensional stochastic processes governed by master equation. By Product Matrix Ansatz (MPA) we determine the conditions sufficient to ensure integrability of a new process of diffusion in a medium with impurities. Investigating the spectrum of this model, we compute the critical exponent z that determines how the observable flow to stationary state. In the folowing, we study the classical 6-vertex model defined in two-dimensional diagonal-diagonal matrix transfer as a unidimensional model of traffic with synchronous and asynchronous dinamics. And to finish our work, we study models of diffusion processes of contact, using the theory of Cluster Mean-Field
6

Vertex Models on Random Graphs

Weigel, Martin 04 November 2002 (has links)
Diese Arbeit befaßt sich mit der Koppelung von Vertex-Modellen an die planaren $\phi^4$-Zufallsgraphen des Zugangs zur Quantengravitation über dynamische Polygonifizierungen. Das betrachtete System hat eine doppelte Bedeutung, einerseits als die Koppelung einer konformen Feldtheorie mit zentraler Ladung $C=1$ an zweidimensionale Euklidische Quantengravitation, andererseits als Anwendung von geometrischer, "annealed" Unordnung auf ein prototypisches Modell der statistischen Mechanik. Da das Modell mit Hilfe einer großangelegten Reihe von Monte Carlo Simulationen untersucht wird, müssen entsprechende Techniken für die Simulation von dynamischen Quadrangulierungen bzw. die dualen $\phi^4$-Graphen entwickelt werden. Hierzu werden verschiedene Algorithmen und die dazugehörigen Züge vorgeschlagen und hinsichtlich ihrer Ergodizität und Effizienz untersucht. Zum Vergleich mit exakten Ergebnissen werden die Verteilung der Koordinationszahlen bzw. bestimmte Analoga davon konstruiert. Für Simulationen des $F$-Modells auf $\phi^4$-Zufallsgraphen wird ein Ordnungsparameter für den antiferroelektrischen Phasenübergang mit Hilfe einer Plakettenspindarstellung formuliert. Ausführliche "finite-size scaling"-Analysen des Kosterlitz-Thouless-Phasenübergangs des $F$-Modells auf dem Quadratgitter und auf Zufallsgraphen werden vorgestellt und die Positionen der jeweiligen kritischen Punkte sowie die dazugehörigen kritischen Exponenten werden bestimmt. Die Rückreaktion des Vertex-Modells auf die Zufallsgraphen wird in Form der Koordinationszahlverteilung, der Verteilung der "Baby-Universen" und dem daraus resultierenden String-Suszeptibilitäts-Exponenten sowie durch die geometrische Zweipunktfunktion analysiert, die eine Schätzung der intrinsischen Hausdorff-Dimension des gekoppelten Systems liefert. / In this thesis, the coupling of ice-type vertex models to the planar $\phi^4$ random graphs of the dynamical polygonifications approach to quantum gravity is considered. The investigated system has a double significance as a conformal field theory with central charge $C=1$ coupled to two-dimensional Euclidean quantum gravity and as the application of a special type of annealed connectivity disorder to a prototypic model of statistical mechanics. Since the model is analyzed by means of large-scale Monte Carlo simulations, suitable simulation techniques for the case of dynamical quadrangulations and the dual $\phi^4$ random graphs have to be developed. Different algorithms and the associated update moves are proposed and investigated with respect to their ergodicity and performance. For comparison to exact results, the co-ordination number distribution of the dynamical polygonifications model, or certain analogues of it, are constructed. For simulations of the 6-vertex $F$ model on $\phi^4$ random graphs, an order parameter for its anti-ferroelectric phase transitions is constructed in terms of a "plaquette spin" representation. Extensive finite-size scaling analyses of the Kosterlitz-Thouless point of the square-lattice and random graph $F$ models are presented and the locations of the critical points as well as the corresponding critical exponents are determined. The back-reaction of the coupled vertex model on the random graphs is investigated by an analysis of the co-ordination number distribution, the distribution of "baby universes" and the string susceptibility exponent as well as the geometric two-point function, yielding an estimate for the internal Hausdorff dimension of the coupled system.
7

On the integrable structure of super Yang-Mills scattering amplitudes

Kanning, Nils 15 December 2016 (has links)
Die maximal supersymmetrische Yang-Mills-Theorie im vierdimensionalen Minkowski-Raum ist ein außergewöhnliches Modell der mathematischen Physik. Dies gilt vor allem im planaren Limes, in dem die Theorie integrabel zu sein scheint. So sind etwa ihre Streuamplituden auf Baumgraphenniveau Invarianten einer Yangschen Algebra, die die superkonforme Algebra psu(2,2|4) beinhaltet. Diese unendlichdimmensionale Symmetrie ist ein Kennzeichen für Integrabilität. In dieser Dissertation untersuchen wir Verbindungen zwischen solchen Amplituden und integrablen Modellen, um Grundlagen für eine effiziente, auf der Integrabilität basierende Berechnung von Amplituden zu legen. Dazu charakterisieren wir Yangsche Invarianten innerhalb der Quanten-Inverse-Streumethode, die Werkzeuge zur Behandlung integrabler Spinketten bereitstellt. In diesem Rahmen entwickeln wir Methoden zur Konstruktion Yangscher Invarianten. Wir zeigen, dass der algebraische Bethe-Ansatz für die Erzeugung von Yangschen Invarianten für u(2) anwendbar ist. Die zugehörigen Bethe-Gleichungen lassen sich leicht lösen. Unser Zugang erlaubt es zudem diese Invarianten als Zustandssummen von Vertexmodellen zu interpretieren. Außerdem führen wir ein unitäres Graßmannsches Matrixmodell zur Berechnung Yangscher Invarianten mit Oszillatordarstellungen von u(p,q|m) ein. In einem Spezialfall reduziert es sich zu dem Brezin-Gross-Witten-Model. Wir wenden eine auf Bargmann zurückgehende Integraltransformation auf unser Matrixmodell an, welche die Oszillatoren in Spinor-Helizitäts-artige Variablen überführt. Dadurch gelangen wir zu einer Weiterentwicklung der Graßmann-Integralformulierung bestimmter Amplituden. Die maßgeblichen Unterschiede sind, dass wir in der Minkowski-Signatur arbeiten und die Integrationskontur auf die unitäre Gruppenmannigfaltigkeit festgelegt ist. Wir vergleichen durch unser Integral gegebene Yangsche Invarianten mit Amplituden und kürzlich eingeführten Deformationen derselben. / The maximally supersymmetric Yang-Mills theory in four-dimensional Minkowski space is an exceptional model of mathematical physics. Even more so in the planar limit, where the theory is believed to be integrable. In particular, the tree-level scattering amplitudes were shown to be invariant under the Yangian of the superconformal algebra psu(2,2|4). This infinite-dimensional symmetry is a hallmark of integrability. In this dissertation we explore connections between these amplitudes and integrable models. Our aim is to lay foundations for an efficient integrability-based computation of amplitudes. To this end, we characterize Yangian invariants within the quantum inverse scattering method, which is an extensive toolbox for integrable spin chains. Making use of this setup, we develop methods for the construction of Yangian invariants. We show that the algebraic Bethe ansatz can be specialized to yield Yangian invariants for u(2). Our approach also allows to interpret these Yangian invariants as partition functions of vertex models. What is more, we establish a unitary Graßmannian matrix model for the construction of u(p,q|m) Yangian invariants with oscillator representations. In a special case our formula reduces to the Brezin-Gross-Witten model. We apply an integral transformation due to Bargmann to our unitary Graßmannian matrix model, which turns the oscillators into spinor helicity-like variables. Thereby we are led to a refined version of the Graßmannian integral formula for certain amplitudes. The most decisive differences are that we work in Minkowski signature and that the integration contour is fixed to be a unitary group manifold. We compare Yangian invariants defined by our integral to amplitudes and recently introduced deformations thereof.

Page generated in 0.0821 seconds