• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mauvaises places ramifiées dans le corps des modules d'un revêtement

Flon, Stéphane 07 June 2002 (has links) (PDF)
Ce travail se fonde sur le lien entre le corps des modules d'un revêtement et les espaces de Hurwitz. Pour un revêtement donné, l'arithmétique de ces espaces fournit des résultats sur la ramification du corps des modules au-dessus du corps de rationalité des points de branchement. Le théorème de Beckmann, qui circonscrit la ramification dans cette extension à certaines places, les mauvaises places, trouve ainsi une démonstration naturelle. Une analyse plus fine des espaces de Hurwitz fournit des informations sur les mauvaises places ne divisant pas l'ordre du groupe de monodromie du revetement (mais où les points de branchement se rencontrent) : l'idée consiste à considérer le revêtement du complété de l'espace de Hurwitz au-dessus du complété de l'espace de configuration de points. Pour une telle place, le lieu de branchement du revêtement se prolonge en une section arithmétique sur ce dernier espace, et la restriction du revêtement de Hurwitz à cette section fournit de l'information sur la ramification dans le corps des modules en la place considérée. Nous étudions ce problème de restriction dans un cadre plus général, en considérant le cas d'un revêtement modérément ramifié le long de diviseurs à croisements normaux restreint à une section, et en nous basant sur le théorème d'Abhyankar. Nous donnons une version effective de ce résultat de ramification dans le corps des modules, en fonction d'entiers qui dépendent des relations de congruence entre les points de branchement, ainsi que d'un choix de générateurs de l'inertie autour des composantes du bord de l'espace de configuration de points croisant la section. À cet effet, nous introduisons un certain type de twists de Dehn, les twists sarments, et nous décrivons leur action sur l'ensemble des classes de Nielsen. Une dernière partie de ce travail regroupe des résultats divers de descente du corps de définition d'un revêtement, qui utilisent des gerbes au-dessus des espaces de Hurwitz.
2

Automorphismes géométriques des groupes libres : croissance polynomiale et algorithmes / Geometric outer automorphisms of free groups : polynomial growth and algorithm

Ye, Kaidi 13 July 2016 (has links)
Un automorphisme (extérieur) $phi $ d'un groupe libre $F_n$ de rang fini $ngeq 2$ est dit géométrique s'il est induit par un homéomorphisme d'une surface. La question à laquelle nous intéressons est la suivante: Quels sont les automorphismes de $F_n$ qui sont géométriques?Nous donnons une réponse algorithmique pour la classe des automorphismes à croissance polynomiale (en s'autorisant à remplacer un automorphisme par une puissance).Pour cela, nous sommes amenés à étudier les automorphismes de graphes de groupes. En particulier, nous introduisons deux transformations élémentaires d'automorphismes de graphes de groupes: les quotients et les éclatements.Pour le cas particulier où l'automorphisme est un twist de Dehn partiel, on obtient un critère pour décider quand un tel twist de Dehn partiel est un véritable twist de Dehn.En appliquant le critère à plusieurs reprises sur un twist de Dehn cumulé, nous montrons que soit on peut "déplier" ce twist de Dehn cumulé jusqu'à obtenir un twist de Dehn ordinaire, soit que $phi$ est à croissance au moins quadratique (et par conséquent, n'est pas géométrique).Cela montre, au passage, que tout automorphisme du groupe libre à croissance linéaire admet une puissance qui est un twist de Dehn. Ce fait est connu des experts, et souvent utilisé, bien qu'il n'en existait pas de preuve formelle dans la littérature (à la connaissance de l'auteur).Pour conclure, on applique l'algorithme de Cohen-Lustig pour le transformer en twist de Dehn efficace, puis on applique l'algorithme Whitehead et des théorèmes classiques de Nielsen-Baer et Zieschang pour construire un modèle géométrique ou pour montrer qu'il n'est pas géométrique. / An automorphism $phi$ of a free group $F_n$ of finite rank $n geq 2$ is said to be geometric it is induced by a homeomorphism on a surface.In this thesis we concern ourselves with answering the question:Which precisely are the outer automorphisms of $F_n$ that are geometric?to which we give an algorithmical decision for the case of polynomially growing outer automorphisms, up to raising to certain positive power.In order to realize this algorithm, we establish the technique of quotient and blow-up automorphisms of graph-of-groups, which when apply for the special case of partial Dehn twist enables us to develop a criterion to decide whether the induced outer automorphism is an actual Dehn twist.Applying the criterion repeatedly on the special topological representative deriving from relative train track map, we are now able to either “unfold” this iterated relative Dehn twist representative level by level until eventually obtain an ordinary Dehn twist representative or show that $hat{phi}$ has at least quadratic growth hence is not geometric.As a side result, we also proved that every linearly growing automorphism of free group has a positive power which is a Dehn twist automorphism. This is a fact that has been taken for granted by many experts, although has no formal proof to be found in the literature.In the case of Dehn twist automorphisms, we then use the known algorithm to make the given Dehn twist representative efficient and apply the Whitehead algorithm as well as the classical theorems by Nielsen, Baers, Zieschangs and others to construct its geometric model or to show that it is not geometric.

Page generated in 0.0619 seconds