• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring the Evolutionary History of North American Prairie Grouse (Genus: Tympanuchus) Using Multi-locus Coalescent Analyses

Galla, Stephanie J. 05 1900 (has links)
Conservation biologists are increasingly using phylogenetics as a tool to understand evolutionary relationships and taxonomic classification. The taxonomy of North American prairie grouse (sharp-tailed grouse, T. phasianellus; lesser prairie-chicken, T. pallidicinctus; greater prairie-chicken, T. cupido; including multiple subspecies) has been designated based on physical characteristics, geography, and behavior. However, previous studies have been inconclusive in determining the evolutionary history of prairie grouse based on genetic data. Therefore, additional research investigating the evolutionary history of prairie grouse is warranted. In this study, ten loci (including mitochondrial, autosomal, and Z-linked markers) were sequenced across multiple populations of prairie grouse, and both traditional and coalescent-based phylogenetic analyses were used to address the evolutionary history of this genus. Results from this study indicate that North American prairie grouse diverged in the last 200,000 years, with species-level taxa forming well-supported monophyletic clades in species tree analyses. With these results, managers of the critically endangered Attwater's prairie-chicken (T. c. attwateri) can better evaluate whether outcrossing Attwater's with greater prairie-chickens would be a viable management tool for Attwater's conservation.
2

Flight characteristics of pen-reared and wild prairie-chickens and an evaluation of a greenhouse to rear prairie-chickens

Hess, Marc Frederick 30 September 2004 (has links)
The introduction of pen-reared Attwater's prairie-chickens (APC, Tympanuchus cupido attwateri) into the wild to supplement existing populations has met with marginal success. Flight characteristics, predator avoidance behavior, and rearing methods are possible factors contributing to post-release mortality of pen-reared birds. To evaluate flight characteristics and predator avoidance behavior of pen-reared APC's released onto the Attwater Prairie Chicken National Wildlife Refuge, flight characteristics and predator avoidance behavior of pen-reared APC's was compared to wild greater prairie-chickens (GPC, T. c. pinnatus) in Minnesota and Kansas using a radar gun and a trained dog. There was no difference (P = 0.134) in flight speed for pen-reared APC and wild GPC. However, wild GPC had greater (P < 0.001) flight distances than did pen-reared APC. Wild GPC and pen-reared APC that had survived in the wild for at least a year flushed at a greater (P < 0.001) distance from an approaching human than did pen-reared APC that had been released for less than 3 months. A trained dog was able to approach closer (P < 0.001) to APC than GPC before birds flushed, and APC did not fly as far as GPC after being flushed by the dog. Pen-reared APC displayed flight endurance deficiencies and were more approachable by humans and a dog before they flushed when compared to wild GPC, which could explain their increased mortality when released into the wild. To determine if APC chicks could be reared without daily human contact, pelleted food, and water in founts, a greenhouse was used to rear chicks in a semi-natural environment. Planted vegetation and commercial insects provided hiding cover and a food source for the APC chicks. An underground heat source provided chick warmth, and water misters and a sprinkler system simulated dew (a water source for chicks) and rain. The greenhouse provided chicks protection from predators and adverse weather conditions (before they could thermo-regulate) while exposing chicks to natural sunlight, day length, and temperature fluctuations. This technique allowed chicks to be reared in a semi-natural environment which reinforced their natural foraging behavior for food and water, and reinforced their hiding and avoidance behaviors, creating a wilder pen-reared bird.
3

Evaluating sustainability of endangered species via simulation: a case study of the Attwater's prairie chicken (Tympanuchus cupido attwateri)

Defex Cuervo, Tulia Ines 15 May 2009 (has links)
Once abundant in the Texas and Louisiana coastal prairie, currently the Attwater’s Prairie Chicken (Tympanuchus cupido attwateri, APC) is close to extinction. Efforts to increase the size of the remaining populations at the Attwater Prairie Chicken National Wildlife Refuge (APCNWR) and the Galveston Bay Prairie Preserve (GBPP) with releases of captive-reared individuals are part of the APC captive- breeding initiative. However, after a decade of yearly releases, the populations are not reaching viable sizes. I analyzed post-release survival data of individuals released at the APCNWR from 1996 to 2005. Results suggest that age at release or date of release had little influence on survival of captive-breed APC. At two weeks post-release, survival estimates (SE) were 0.76 (0.03) for females and 0.82 (0.04) for males. Approximately 50% of the females and 33% of the males died within the first 60 days post-release. Survivorship during the breeding season showed that male survival (0.36) was higher than female survival (0.23). Survivorship from the median release date to beginning of the breeding season was 52% for males and 39% for females. Mean female survival was 155 days, while median survival was 94 days. For males, mean survival was 135 days and the median was 81 days. Results from a stochastic simulation model, which was developed based on the survival analysis of APC on the APCNWR, confirmed that releasing individuals closer to the beginning of the breeding season and sex ratio at release had little effect on population growth. Regardless of the number of individuals released annually, population sizes immediately prior to the release dates were only 11–12% of the population sizes immediately after the release dates. At current mortality rates, simulated APC populations could not sustain themselves even if reproductive parameters were increased to the maximum rates reported for APC, or to the maximum rates reported for the closely related Greater prairie chicken. Based on these results, the APC may face extinction within the next decade unless conservation efforts succeed on increasing reproductive success and greatly reducing mortality rates.
4

Flight characteristics of pen-reared and wild prairie-chickens and an evaluation of a greenhouse to rear prairie-chickens

Hess, Marc Frederick 30 September 2004 (has links)
The introduction of pen-reared Attwater's prairie-chickens (APC, Tympanuchus cupido attwateri) into the wild to supplement existing populations has met with marginal success. Flight characteristics, predator avoidance behavior, and rearing methods are possible factors contributing to post-release mortality of pen-reared birds. To evaluate flight characteristics and predator avoidance behavior of pen-reared APC's released onto the Attwater Prairie Chicken National Wildlife Refuge, flight characteristics and predator avoidance behavior of pen-reared APC's was compared to wild greater prairie-chickens (GPC, T. c. pinnatus) in Minnesota and Kansas using a radar gun and a trained dog. There was no difference (P = 0.134) in flight speed for pen-reared APC and wild GPC. However, wild GPC had greater (P < 0.001) flight distances than did pen-reared APC. Wild GPC and pen-reared APC that had survived in the wild for at least a year flushed at a greater (P < 0.001) distance from an approaching human than did pen-reared APC that had been released for less than 3 months. A trained dog was able to approach closer (P < 0.001) to APC than GPC before birds flushed, and APC did not fly as far as GPC after being flushed by the dog. Pen-reared APC displayed flight endurance deficiencies and were more approachable by humans and a dog before they flushed when compared to wild GPC, which could explain their increased mortality when released into the wild. To determine if APC chicks could be reared without daily human contact, pelleted food, and water in founts, a greenhouse was used to rear chicks in a semi-natural environment. Planted vegetation and commercial insects provided hiding cover and a food source for the APC chicks. An underground heat source provided chick warmth, and water misters and a sprinkler system simulated dew (a water source for chicks) and rain. The greenhouse provided chicks protection from predators and adverse weather conditions (before they could thermo-regulate) while exposing chicks to natural sunlight, day length, and temperature fluctuations. This technique allowed chicks to be reared in a semi-natural environment which reinforced their natural foraging behavior for food and water, and reinforced their hiding and avoidance behaviors, creating a wilder pen-reared bird.
5

The Influence of Wind Energy Development on Columbian Sharp-tailed Grouse (Tympanuchus phasianellus columbianus) Breeding Season Ecology in Eastern Idaho

Proett, Matthew C. 01 May 2017 (has links)
The Columbian sharp-tailed grouse (Tympanuchus phasianellus columbianus; CSTG) has experienced range-wide population declines, primarily as a result of habitat loss or degradation, and currently occupies <10% of its historic range. Expansion of wind energy developments across the remaining occupied CSTG range has been identified as a potential threat to the species. To assess the potential influence of wind energy development on CSTG breeding season ecology, I captured and radio-marked 135 female CSTG during 2014-2015 at leks located between 0.1-13.8 km from wind turbines in restored grassland habitats. I subsequently monitored 147 nests and 68 broods and used an information-theoretic model selection approach to assess the potential influence of wind energy distance and density variables, multi-scale habitat features, temporal factors, and precipitation on CSTG nest site selection, daily nest survival, brood success, and chick survival. The best nest site selection model suggested a positive functional response to the amount of restored grassland habitat with >30% forb cover at the nesting core use (60 ha) scale. Daily nest survival was positively associated with visual obstruction readings at the nest and the amount of restored grassland habitat containing >30% forb cover at the core use (60 ha) scale. Nest site selection and daily nest survival were not influenced by proximity to turbines or turbine density at the core use or breeding season home range (1385 ha) scales. Early (14-day) brood success was positively influenced by post-hatch precipitation and late (42-day) brood success was positively influenced by earlier hatch dates. Chick survival to 42 days post hatch was positively influenced by post-hatch precipitation and earlier hatch dates and negatively influenced by increasing densities of wind turbines at the breeding season home range scale. The probability of an individual chick surviving to 42 days decreased by 50% when there were ≥10 turbines within 2.1 km of the nest. In restored grassland habitats, such as Conservation Reserve Program fields, I recommend plantings and management practices that will result in diverse, bunchgrass-dominated nesting habitat with residual grass cover and >30% forb canopy cover during the nesting season. My results suggest that wind turbines occurring within 2.1 km of nesting habitats (i.e., 4.8 km of occupied leks) may negatively affect CSTG recruitment.
6

Lesser prairie-chicken movement, space use, survival, and response to anthropogenic structures in Kansas and Colorado

Plumb, Reid Thomas January 1900 (has links)
Master of Science / Biology / David A. Haukos / The lesser prairie-chicken (Tympanuchus pallidicinctus) is an endemic North American prairie grouse once widely distributed in the southwestern Great Plains. Recent population declines and continued threats to lesser prairie-chicken populations prompted the U.S. Fish and Wildlife Service to list the species as “threatened” under the protection of the Endangered Species Act of 1973 in May 2014. The northern extent of the species range in Kansas and Colorado supports 2/3 of the remaining range-wide population of lesser prairie-chickens, but has thus far been relatively understudied. Concern for species viability has created a need to fill current knowledge gaps in lesser prairie-chicken ecology, provide more recent demographic information, and develop appropriate conservation actions. I evaluated female survival, movement, space use, and effects of anthropogenic features during the breeding seasons of 2013 and 2014. I captured and radio-tagged 201 females with satellite GPS (N = 114) and VHF (N = 82) transmitters within the three ecoregions of Kansas and Colorado. Mean daily movement varied by region, year, and breeding season period but the amount of space used was consistent between ecoregions and years. On average, females moved 1352 m ± 12 [SE] per day. Females moved the greatest distances during the lekking period of the breeding season with females moving 2074 m ± 36 per day. Females were most sedentary during the brooding period moving only 780 m ± 14 per day. Mean breeding season home range size was estimated to be 340 ha ± 27. The lekking period had the greatest amount of movement as a result of females visiting leks to find mates, copulate, and search for nest locations. Female’s movements were reduced during the brooding period because of physical limitations of the brood mobility. Variation in movement between ecoregions was most likely a product of fragmentation as females moved 10-30% more in northwest Kansas compared to the study sites, which was characterized by northwest Kansas having the greatest degree of fragmentation. Survival varied by ecoregion with females in northwest Kansas having the lowest probability of surviving the 6-month breeding season compared to other ecoregions. Estimated 6-month breeding season survival during 2013 and 2014 was 0.455 (95% CI = 0.38 – 0.53). Survival was lowest during the nesting period, which claimed 59.5% of all observed mortalities. Survival increased from 2013 to 2014 in northwest Kansas as grassland habitats recovered from extreme drought conditions in 2013. Drought was less severe in south-central Kansas and survival rates remained fairly consistent across years. Avian and mammalian predators caused 45.7% and 34.3% of breeding season mortalities, respectively. Other mortalities were either cause by snakes or were unknown (5.7%, 14.3%). Overhead cover may have been limited from drought conditions causing nesting females to be more visible to avian predators during incubation. When pooled across years and ecoregions, rump-mounted GPS transmitters did not adversely affect female survival when compared to commonly used necklace style VHF transmitter (VHF: 0.48 95% CI = 0.39 – 0.58; GPS: 0.50 95% CI = 0.38 – 0.64). Distance to distribution power lines and lek were significant predictors of female space use within their home range with females behaviorally avoiding distribution power lines and using space closer to leks. Space use decreased with increasing oil well density. Females avoided areas that had well densities of 23 wells/250 ha. Observed female locations were further from anthropogenic features but closer to leks on average than at random. Avoidance behavior of anthropogenic features may result in functional habitat loss and reduce the amount of suitable habitat available; compounding previously fragmented landscapes. Anthropogenic features may limit movement by acting as barriers on the landscape and potentially disrupt population connectivity. Furthermore, habitats selected for nesting and brooding may result in potential ecological traps because of reduce breeding success when impacted by increased occurrence and densities of anthropogenic features. Reduced breeding success can have significant negative impacts on population persistence. Average home range size across all ecoregions indicated that female lesser prairie-chickens need at least 340 ha of habitat to fulfill her life-history requirements during the breeding season. Brooding habitats need to be in close proximity (≤ 750 m) to nesting cover to reduce distance traversed by newly hatched broods. Reducing grazing pressure will ensure that sufficient vertical habitat structure is available during the nesting period and increase female survival; especially in times of drought. Mangers should restrict construction of anthropogenic features near or within suitable lesser prairie-chicken habitat with emphasis on distribution power lines. Well densities should not exceed 1 well/60 acres (11 wells/section) for a >10% probability of use. However, because the affect that density of wells has on demographic rates of lesser prairie-chickens has yet to be determined, a conservative approach where well densities in or adjacent to grassland patches should be minimized as much as possible is best.
7

Lesser prairie-chicken reproductive success, habitat selection, and response to trees

Lautenbach, Joseph Mark January 1900 (has links)
Master of Science / Department of Biology / David A. Haukos / The lesser prairie-chicken (Tympanuchus pallidicinctus) is a species of prairie grouse native to the southwest Great Plains. Population declines and threats to populations of lesser prairie-chickens led U.S. Fish and Wildlife Service to list the species as “threatened” under the protection of the Endangered Species Act in May 2014. Lesser prairie-chickens are found within three distinct ecoregions of Kansas and Colorado and portions of the species’ range are affected by tree encroachment into grasslands. The effect of trees on lesser prairie-chickens is poorly understood. I evaluated habitat selection and reproductive success and across the northern portion of the species’ range. I captured female lesser prairie-chickens within the three different ecoregions in Kansas and Colorado to track nest and brood survival and measure nest and brood habitat. My findings show that there are regional and annual variations in nest and brood survival. Mean nest survival during 2013 and 2014 was estimated to be 0.388 (95% CI = 0.343 – 0.433) for a 35-day exposure period. Brood survival during 2013 and 2014 was estimated to be 0.316 (95% CI = 0.184 – 0.457) for 56 days. Chick survival was the lowest during the first week of life and is probably a limiting factor for population growth. Chick and brood survival decreased as Julian hatch date increased. Across the northern portion of the species’ range, females consistently select visual obstruction between 2-3 dm. Vegetation at the nest changes between regions and years to reflect environmental and regional conditions. Broods consistently selected habitats with greater percent cover of forbs than was expected at random across all study sites. Broods also selected against areas of bare ground. The threshold of lesser prairie-chicken use was 2 trees/ha throughout the year. No nests were located within areas with greater densities. Lesser prairie-chickens had a greater probability of use at greater distances from trees and at lower tree densities. To provide adequate nesting habitat managers should provide 2-3 dm of visual obstruction. Providing forb cover with visual obstruction between 2.5-5 dm near nesting habitat should provide adequate habitat for broods. Removing trees in core habitats and expand removal efforts outward should expand potential habitat for lesser prairie-chickens.
8

MODELING THE POTENTIAL FOR GREATER PRAIRIE-CHICKEN AND FRANKLIN’S GROUND SQUIRREL REINTRODUCTION TO AN INDIANA TALLGRASS PRAIRIE

Zachary T Finn (11715284) 22 November 2021 (has links)
<p>Greater prairie-chickens (<i>Tympanuchus cupido pinnatus</i>; GPC) have declined throughout large areas in the eastern portion of their range. I used species distribution modeling to predict most appropriate areas of translocation of GPC in and around Kankakee Sands, a tallgrass prairie in northwest Indiana, USA. I used MaxEnt for modelling the predictions based on relevant environmental predictors along with occurrence points of 54 known lek sites. I created four models inspired by Hovick et al. (2015): Universal, Environmental, Anthropogenic-Landcover, and Anthropogenic-MODIS. The Universal, Environmental, and Anthropogenic-MODIS models possessed passable AUC scores with low omission error rates. However, only the Universal model performed better than the null model according to binomial testing. I created maps of all models with passing AUC scores along with an overlay map displaying the highest predictions across all passing models. MaxEnt predicted high relative likelihoods of occurrence for the entirety of Kankakee Sands and many areas in the nearby landscape, including the surrounding agricultural matrix. With implementation of some management suggestions and potential cooperation with local farmers, GPC translocation to the area appears plausible.</p> <p>Franklin’s ground squirrels (<i>Poliocitellus franklinii</i>; FGS) have declined throughout a large portion of the eastern periphery of their range. Because of this, The Nature Conservancy is interested in establishing a new population of these animals via translocation. The area of interest is tallgrass prairie in northwest Indiana, USA: Kankakee Sands and the surrounding landscape. Species distribution modelling can help identify areas that are suitable for translocation. I used MaxEnt, relevant environmental variables, and 44 known occurrence points to model the potential for translocation of FGS to Kankakee Sands and the surrounding area. I created four models inspired by Hovick et al. (2015): Universal, Environmental, Anthropogenic-Landcover, and Anthropogenic-MODIS. I created maps of models with passing AUC scores. The final map was an overlay map displaying the highest relative likelihood of occurrence predictions for the area in all passing models. Only the Universal and Anthropogenic-MODIS models had passable AUC scores. Both had acceptable omission error rates. However, none of the models performed better than the null model (p < 0.05). MaxEnt predicted that a few areas in and outside of Kankakee Sands possess high relative likelihoods of occurrence of FGS in both the Universal and Anthropogenic-MODIS models. However, MaxEnt predicted high relative likelihoods in the surrounding agricultural matrix in the Universal Model. FGS prefer to cross through agricultural areas via unmowed roadside instead of open fields (Duggan et al. 2011). Because of this, high predictions in agricultural matrices in the Universal model are irrelevant. High relative likelihood predictions for linear sections that are obviously roads are disregardable in the context of my modeling efforts. Because of my low sample size, none of the models are really reliable in predicting relative likelihoods of occurrence for this area. Despite high relative likelihood predictions, the appropriateness of a translocation effort to the area is inconclusive.</p>

Page generated in 0.0226 seconds