• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 33
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 200
  • 80
  • 75
  • 61
  • 44
  • 42
  • 37
  • 34
  • 29
  • 28
  • 25
  • 23
  • 22
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Magnetic signature characterization of a fixed-wing vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV)

Hansen, Cody Robert Daniel 17 December 2018 (has links)
The use of magnetometers combined with unmanned aerial vehicles (UAVs) is an emerging market for commercial and military applications. This study presents the methodology used to magnetically characterize a novel fixed-wing vertical take-off and landing (VTOL) UAV. The most challenging aspect of integrating magnetometers on manned or unmanned aircraft is minimizing the amount of magnetic noise generated by the aircraft’s onboard components. As magnetometer technology has improved in recent years magnetometer payloads have decreased in size. As a result, there has been an increase in opportunities to employ small to medium UAV with magnetometer applications. However, in comparison to manned aviation, small UAVs have smaller distance scales between sources of interference and sensors. Therefore, more robust magnetic characterization techniques are required specifically for UAVs. This characterization determined the most suitable position for the magnetometer payload by evaluating the aircraft’s static-field magnetic signature. For each aircraft component, the permanent and induced magnetic dipole moment characteristics were determined experimentally. These dipole characteristics were used to build three dimensional magnetic models of the aircraft. By assembling the dipoles in 3D space, analytical and numerical static-field solutions were obtained using MATLAB computational and COMSOL finite element analysis frameworks. Finally, Tolles and Lawson aeromagnetic compensation coefficients were computed and compared to evaluate the maneuver noise for various payload locations. The magnetic models were used to study the sensitivity of the aircraft configuration and to simultaneously predict the effects at potential sensor locations. The study concluded by predicting that a wingtip location was the area of lowest magnetic interference. / Graduate
182

Etude de la sensibilité au vent latéral d'un mini-drone à capacité de vol stationnaire / Study of the sensitivity to the lateral wind of a Mini Unmanned Aerial Vehicle with VTOL flight capabilities

Gomez Ariza, David 28 November 2013 (has links)
Dans l’évolution actuelle de mini-drones à décollage et atterrissage vertical, configurations convertibles de type “tilt-rotors” et “tilt-body” sont de plus en plus souvent utilisées. Ces configurations se sont avérées être très sensibles à l’effet du vent latéral quand ils sont en vol de transition ou tout simplement en vol à basse vitesse. Pour cette raison, une bonne compréhension du comportement d’un proprotor et de l’interaction proprotor-voilure à incidence est nécessaire pour la conception de ce type de drones. Un modèle à l’échelle du mini-drone MiniREC a été testée à la soufflerie S4 de type Eiffel de l’ISAE pour comprendre le comportement de la charge aérodynamique du proprotor au cours de la transition du vol vertical au vol horizontal. Aussi, pour observer l’effet d’échelle et étudier le type de proprotor utilisé normalement par les MAV, une deuxième expérience pour proprotors à incidence a été réalisée à la soufflerie SaBRE. Un anémomètre à film chaud a été utilisé pour caractériser le sillage de l’hélice. Les résultats expérimentaux ont montré la grande incidence de ces forces sur la stabilité longitudinale du drone à des angles d’incidence élevés. Il a également été montré que l’écoulement généré par un proprotor au incidence est de nature très instable, cequi rend sa modélisation complexe. D’un point de vue numérique, l’étude de l’hélice à l’incidence a été faite en utilisant l’hypothèse de Glauert pour un disque actuateur au incidence. Les résultats analytiques sont comparés avec les résultats expérimentaux obtenus à partir des mesures à film chauden 2D et une simulation CFD d’un disque actuateur au incidence chargé avec une charge moyenne équivalente aux valeurs de poussée expérimentales SaBRE et une simulation URANS CFD de l’hélice complète. En outre, les résultats de l’expérience S4 ont été comparés au modèle de Ribner pour les hélices en lacet et le modèle de Young qui est une modification statistique de l’analyse Ribner. La modification proposée du modèle de Ribner donne de bons résultats pour les rotors seul, même à des angles d’attaque élevés. Toutefois, il a été clairement démontré que son amélioration ou un nouveau modèle sont nécessaires afin de prévoir correctement la poussée et les forces produites par proprotors simples et co-axiaux. Pour cela un méthode quasi-stationnaire du premier ordre basée sur la théorie de la dynamique des éléments pales a été développée. Enfin, un prototype aérodynamique avec une sensibilité réduite au vent latéral a été conçu, construit et testé dans la soufflerie S4. Le test a montré que la première conclusion à propos de la contribution du proprotor à la sensibilité longitudinaletotale des mini-drones était justifiée et que la nouvelle configuration fait un candidat idéal pour lesconceptions futures de mini-drones basculant à décollage et atterrissage vertical. / In the current development of VTOL mini-UAS and MAVs, configurations like tilt proprotors and tilt-body are being applied more and more often. These types of configurations have shown to be very sensitive to the effect of the lateral wind when they are in transition flight or simply in low speed flight. For this reason a correct understanding of the behavior of a proprotor and the proprotor-wing interaction at incidence is necessary for the design and conception of this type ofUAS. A scaled model of the MiniREC mini-UAS was tested at the ISAE S4 Eiffel type wind tunnel to understand the aerodynamic load behavior of the proprotor during the transition from vertical flight to horizontal flight. Also, to observe the effect of the scale and study the type of proprotor usednormally by MAVs, a second experiment for proprotors at incidence was conducted at the SaBRE wind tunnel. A hot film anemometer was used to characterize the propeller wake. The experimental results showed the great impact of these loads over the longitudinal stability of the drone at highangles of incidence. It was also shown that the nature of the flow for a proprotor at incidence ishighly unsteady which makes its modeling a complex process. From a numerical point of view the study of the propeller at incidence was done using the Glauert’s hypothesis for an actuator disk at incidence. The analytic results are compared with experimental results obtained from the 2D hot film measurements and a CFD simulation of an actuator disk at incidence loaded with a mean load equivalent to experimental SaBRE thrust values and URANS CFD simulation of the full propeller. The results of the S4 experiment were also compared to Ribner’s model for propellers in yaw and the Young’s model which is a statistical modification of Ribner’s analysis. The present modification of Ribner’s model gives good results for single rotors even at high angles of attack. However it wasclearly shown that some improvement or a new model were needed to correctly predict the thrustand the off-axis loads produced by single and coaxial proprotors. For this a first order quasi-steady method based on blade element momentum theory was developed. Finally an aerodynamic prototype(with reduced sensitivity to the lateral wind) was designed on these bases, built and tested in theS4 wind-tunnel. The test showed that the initial conclusion about the contribution of the proprotorto the total longitudinal sensitivity of the mini-UAS were justified and that the new configuration showed a reduced sensitivity to the lateral wind which makes it a perfect candidate for future designs of tilt-body VTOL mini-UAS .
183

Integration and assessment of a dual core chip - Atmel’s DIOPSIS 940 - for a flight control system.

Majewski, Łukasz January 2009 (has links)
A dual core Atmel DIOPSIS 940 chip consists of a DSP and an ARM9 functional units in a single silicon die. This thesis presents the process of integration and assessment of using this processor in a flight control system. A complete design of the system is provided including a description of the DIOPSIS 940 from the perspective of requirements of the application. The integration of the processor with a typical set of components of a flight control system is provided. Additionally, a suite of programs required for developing software for the system is included. Capabilities of both cores of the processor are analysed in a series of experiments. Computational performance in typical tasks of a flight control system is analyzed and compared. The application of attitude stabilization for a micro-scale UAS is described.
184

Improving Autonomous Vehicle Safety using Communicationsand Unmanned Aerial Vehicles

Dowd, Garrett E. January 2019 (has links)
No description available.
185

Aircraft Based GPS Augmentation Using an On-Board RADAR Altimeter for Precision Approach and Landing of Unmanned Aircraft Systems

Videmsek, Andrew R. 02 June 2020 (has links)
No description available.
186

Dense 3D Point Cloud Representation of a Scene Using Uncalibrated Monocular Vision

Diskin, Yakov 23 May 2013 (has links)
No description available.
187

Three Enabling Technologies for Vision-Based, Forest-Fire Perimeter Surveillance Using Multiple Unmanned Aerial Systems

Holt, Ryan S. 21 June 2007 (has links) (PDF)
The ability to gather and process information regarding the condition of forest fires is essential to cost-effective, safe, and efficient fire fighting. Advances in sensory and autopilot technology have made miniature unmanned aerial systems (UASs) an important tool in the acquisition of information. This thesis addresses some of the challenges faced when employing UASs for forest-fire perimeter surveillance; namely, perimeter tracking, cooperative perimeter surveillance, and path planning. Solutions to the first two issues are presented and a method for understanding path planning within the context of a forest-fire environment is demonstrated. Both simulation and hardware results are provided for each solution.
188

Vision-Based Guidance for Air-to-Air Tracking and Rendezvous of Unmanned Aircraft Systems

Nichols, Joseph Walter 13 August 2013 (has links) (PDF)
This dissertation develops the visual pursuit method for air-to-air tracking and rendezvous of unmanned aircraft systems. It also shows the development of vector-field and proportional-integral methods for controlling UAS flight in formation with other aircraft. The visual pursuit method is a nonlinear guidance method that uses vision-based line of sight angles as inputs to the algorithm that produces pitch rate, bank angle and airspeed commands for the autopilot to use in aircraft control. The method is shown to be convergent about the center of the camera image frame and to be stable in the sense of Lyapunov. In the lateral direction, the guidance method is optimized to balance the pursuit heading with respect to the prevailing wind and the location of the target on the image plane to improve tracking performance in high winds and reduce bank angle effort. In both simulation and flight experimentation, visual pursuit is shown to be effective in providing flight guidance in strong winds. Visual pursuit is also shown to be effective in guiding the seeker while performing aerial docking with a towed aerial drogue. Flight trials demonstrated the ability to guide to within a few meters of the drogue. Further research developed a method to improve docking performance by artificially increasing the length of the line of sight vector at close range to the target to prevent flight control saturation. This improvement to visual pursuit was shown to be an effective method for providing guidance during aerial docking simulations. An analysis of the visual pursuit method is provided using the method of adjoints to evaluate the effects of airspeed, closing velocity, system time constant, sensor delay and target motion on docking performance. A method for predicting docking accuracy is developed and shown to be useful for predicting docking performance for small and large unmanned aircraft systems.
189

SOYBEAN PLANT POPULATIONS AND DIGITAL ASSESSMENTS

Richard M Smith (14279081), Shaun N. Casteel (10972050), Jason Ackerson (9749436), Keith Cherkauer (7890221), Melba Crawford (14279296) 20 December 2022 (has links)
<p> Soybean seed cost has dramatically increased in recent decades which has led to producer interest in lowering input cost through reductions in seeding rate. Fifty-eight seeding rate trials of soybean were conducted at field-scale in Indiana from 2010 to 2021 to update recommendations of seeding rates and plant population. The objectives were to determine the agronomic optimal seeding rate (AOSR) and plant population (AOPP) based on planting equipment, tillage practices, and planting date. Economic optimal seeding rate (EOSR) was also determined based on these field scenarios. Harvest AOPP was not influenced by planting equipment (~212,000 plants ha-1) or tillage (~239,000 plants ha-1), but AOSR varied. Soybean seeded with a row-crop planter optimized grain yield with 352,600 seeds ha-1; whereas, the grain drill required 75,200 more seeds ha-1. Soybean seeded into conventional tillage maximized grain yield at 380,400 seeds ha-1; whereas, under no-till conditions 41,400 more seeds ha-1 were required. Timely planting required 417,300 seeds ha-1 to optimize grain yield, which resulted in harvest AOPP of 216,700 plants ha-1. Conversely, late plantings required 102,800 fewer seeds ha-1 but 36,200 more plants ha-1 than timely planting. Depending on seed cost and soybean market price, seeding rates could be reduced 13,700 to 92,800 seeds ha-1 below AOSR to maximize profit.</p> <p>Secondly, digital imagery with high spatial resolution was collected with an unmanned aerial vehicle (UAV) to develop a simple and practical method to segment soybean from non-plant pixels. The best vegetation indices were selected to segment young soybean plants (VC to V6). Two field-scale trials of soybean were planted in 2020 with the agronomic trial design of two varieties x five seeding rates with three replications. The imagery was collected during this period as it coincides with the time for determining whether a soybean stand should be replanted. Five relative vegetative indices based on the red, green, and blue (RGB) imagery were evaluated: excess greenness index (ExG), excess redness index (ExR), green leaf index (GLI), normalized green-red difference index (NGRDI) and visible atmospheric resistance index (VARI). Both GLI and ExG were superior in overall accuracy compared to all other vegetative indices with very small soybean plants (VC to V1 growth stages). VARI and NGRDI had relatively poor overall accuracy at VC and V1, but had similar overall accuracy to GLI as soybean plants grew larger (V2 to V6 growth stages). Across all growth stages and locations, ExR performed the poorest. Moreover, GLI had consistent performance across the range of growth stages, suggesting its suitability for early soybean stand assessment methods.</p> <p>Six field-scale trials were established in 2020 and 2021 in Indiana with two varieties seeded from 123,000 to 618,000 seeds ha-1. Canopy cover was calculated using GLI to create binary segmentation of plant pixels and non-plant pixels. UAV-derived canopy cover measurements were correlated with plant population of soybean from VC to V4 and growing degree days (GDD) after planting. Yield potential (75, 80, 85, 90, 95, 100%) was correlated with canopy cover from VC to V4 and GDD after planting. Canopy cover of 2.1, 5.0, 8.9 and 13.8% by 150, 250, 350, and 450 GDD°C after planting, respectively, would maximize yield. Canopy cover for 75% yield potential was one-fourth as much as the 100% yield potential. Recommended threshold for replant decisions should be based on canopy cover to attain 95% yield potential. Field observations below a canopy cover of 1.8, 4.2, 7.4, and 11.5% canopy cover by 150, 250, 350, and 450 GDD°C after planting respectively, would consider replanting. </p>
190

Adaptive Controller Development and Evaluation for a 6DOF Controllable Multirotor

Furgiuele, Theresa Chung Wai 03 October 2022 (has links)
The omnicopter is a small unmanned aerial vehicle capable of executing decoupled translational and rotational motion (six degree of freedom, 6DOF, motion). The development of controllers for various 6DOF controllable multirotors has been much more limited than development for quadrotors, which makes selecting a controller for a 6DOF multirotor difficult. The omnicopter is subject to various uncertainties and disturbances from hardware changes, structural dynamics, and airflow, making adaptive controllers particularly interesting to investigate. The goal of this research is to design and evaluate the performance of various position and attitude controller combinations for the omnicopter, specifically focusing on adaptive controllers. Simulations are first used to compare combinations of three position controllers, PID, model reference adaptive control, augmented model reference adaptive control (aMRAC), and four attitude controllers, PI/feedback linearization (PIFL), augmented model reference adaptive control, backstepping, and adaptive backstepping (aBack). For the simulations, the omnicopter is commanded to point at and track a stationary aim point as it travels along a $C^0$ continuous trajectory and a trajectory that is $C^1$ continuous. The controllers are stressed by random disturbances and the addition of an unaccounted for suspended mass. The augmented model reference adaptive controller for position control paired with the adaptive backstepping controller for attitude control is shown to be the best controller combination for tracking various trajectories while subject to disturbances. Based on the simulation results, the PID/PIFL and aMRAC/aBack controllers are selected to be compared during three different flight tests. The first flight test is on a $C^1$ continuous trajectory while the omnicopter is commanded to point at and track a stationary aim point. The second flight test is a hover with an unmodeled added weight, and the third is a circular trajectory with a broken blade. As with the simulation results, the adaptive controller is shown to yield better performance than the nonadaptive controller for all scenarios, particularly for position tracking. With an added weight or a broken propeller, the adaptive attitude controller struggles to return to level flight, but is capable of maintaining steady flight when the nonadaptive controller tends to fail. Finally, while model reference adaptive controllers are shown to be effective, their nonlinearity can make them difficult to tune and certify via standard certification methods, such as gain and phase margin. A method for using time delay margin estimates, a potential certification metric, to tune the adaptive parameter tuning gain matrix is shown to be useful when applied to an augmented MRAC controller for a quadrotor. / Doctor of Philosophy / The omnicopter is a small unmanned aerial vehicle capable of executing decoupled translational and rotational motion. The development of controllers for these types of vehicles has been limited, making controller selection difficult. The omnicopter is subject to variations in hardware and airflow, making adaptive controllers particularly interesting to investigate. The goal of this research is to design and compare the performance of various position and attitude controller combinations for the omnicopter, specifically focusing on adaptive controllers. Simulations are first used to compare combinations of several position and attitude controllers on various trajectories and disturbances. Simulation results showed that a fully adaptive controller combination produced the best trajectory tracking while subject to disturbances. As with the simulation results, flight tests showed the adaptive controller yields better performance than the nonadaptive controller for all scenarios, particularly for position tracking. Finally, while the adaptive position controller was shown to be effective, it is difficult to tune and certify for widespread use. A method for using time delay margin estimates, a potential certification metric, to tune the adaptive controller is shown to be useful when applied to an adaptive controller for a quadrotor.

Page generated in 0.029 seconds