• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 33
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 192
  • 78
  • 70
  • 59
  • 42
  • 40
  • 36
  • 33
  • 28
  • 27
  • 25
  • 23
  • 21
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Implementation of UAS-based P-band signals of opportunity receiver for root-zone soil moisture retrieval

Peranich, Preston 30 April 2021 (has links)
Root-zone soil moisture (RZSM) is an important variable when forecasting plant growth, determining water availability during drought, and understanding evapotranspiration as a flux. However, current methods indirectly estimate RZSM using data assimilation, which requires time-series data to make model-based predictions. This is because direct measurement requires a lower frequency signal, typically P-band and below (<500MHz), to reach root zone depths and, in turn, necessitates a larger antenna to be deployed in space, which is often unfeasible. A new remote sensing technique known as Signals of Opportunity (SoOp) reutilizes transmitted communication signals to perform microwave remote sensing. This means that SoOp platforms need not include a transmitter, but rather rely on passive radar technology to make measurements. This thesis details the development of a UAS-based P-band SoOp receiver instrument. This platform will be used to progress the state-of-art in techniques for direct measurement of RZSM.
142

Multi-Agent Control Using Fuzzy Logic

Cook, Brandon M. January 2015 (has links)
No description available.
143

Development of Flight-Test Performance Estimation Techniques for Small Unmanned Aerial Systems

McCrink, Matthew H. January 2015 (has links)
No description available.
144

COCO-Bridge: Common Objects in Context Dataset and Benchmark for Structural Detail Detection of Bridges

Bianchi, Eric Loran 14 February 2019 (has links)
Common Objects in Context for bridge inspection (COCO-Bridge) was introduced for use by unmanned aircraft systems (UAS) to assist in GPS denied environments, flight-planning, and detail identification and contextualization, but has far-reaching applications such as augmented reality (AR) and other artificial intelligence (AI) platforms. COCO-Bridge is an annotated dataset which can be trained using a convolutional neural network (CNN) to identify specific structural details. Many annotated datasets have been developed to detect regions of interest in images for a wide variety of applications and industries. While some annotated datasets of structural defects (primarily cracks) have been developed, most efforts are individualized and focus on a small niche of the industry. This effort initiated a benchmark dataset with a focus on structural details. This research investigated the required parameters for detail identification and evaluated performance enhancements on the annotation process. The image dataset consisted of four structural details which are commonly reviewed and rated during bridge inspections: bearings, cover plate terminations, gusset plate connections, and out of plane stiffeners. This initial version of COCO-Bridge includes a total of 774 images; 10% for evaluation and 90% for training. Several models were used with the dataset to evaluate model overfitting and performance enhancements from augmentation and number of iteration steps. Methods to economize the predictive capabilities of the model without the addition of unique data were investigated to reduce the required number of training images. Results from model tests indicated the following: additional images, mirrored along the vertical-axis, provided precision and accuracy enhancements; increasing computational step iterations improved predictive precision and accuracy, and the optimal confidence threshold for operation was 25%. Annotation recommendations and improvements were also discovered and documented as a result of the research. / MS / Common Objects in Context for bridge inspection (COCO-Bridge) was introduced to improve a drone-conducted bridge inspection process. Drones are a great tool for bridge inspectors because they bring flexibility and access to the inspection. However, drones have a notoriously difficult time operating near bridges, because the signal can be lost between the operator and the drone. COCO-Bridge is an imagebased dataset that uses Artificial Intelligence (AI) as a solution to this particular problem, but has applications in other facets of the inspection as well. This effort initiated a dataset with a focus on identifying specific parts of a bridge or structural bridge elements. This would allow a drone to fly without explicit direction if the signal was lost, and also has the potential to extend its flight time. Extending flight time and operating autonomously are great advantagesfor drone operators and bridge inspectors. The output from COCO-Bridge would also help the inspectors identify areas that are prone to defects by highlighting regions that require inspection. The image dataset consisted of 774 images to detect four structural bridge elements which are commonly reviewed and rated during bridge inspections. The goal is to continue to increase the number of images and encompass more structural bridge elements in the dataset so that it may be used for all types of bridges. Methods to reduce the required number of images were investigated, because gathering images of structural bridge elements is challenging,. The results from model tests helped build a roadmap for the expansion and best-practices for developing a dataset of this type.
145

Tailoring an Airworthiness Document to Unmanned Aircraft Systems: A Case Study of MIL-HDBK-516C

Halefom, Mekonen H. 17 March 2020 (has links)
With the popularity of unmanned aircraft systems (UAS), there is a growing need to assess airworthiness for safe operations in shared airspace. In the context of this thesis, shared airspace implies the introduction of UAS into airspace designated for manned aircraft. Airworthiness guidelines are generally statements that state safety requirements to prevent unwanted consequences, such as aircraft accidents. Many governmental agencies such as the U.S. Federal Aviation Administration (FAA) analyzed the risks of UAS to third-parties, all personnel and properties exterior to the aircraft. This thesis concerns the adaptation of existing airworthiness documents written for manned aircraft to UAS. The proposed method has three stages that are applied in sequence to identify relevant and irrelevant airworthiness statements, the building blocks of an airworthiness document, with regard to UAS. This method is applied to MIL-HDBK-516C, used as a case study; however, the proposed methodology can be applied to any airworthiness document developed for manned aircraft. This thesis presents a list of all MIL-HDBK-516C airworthiness statements that are directly relevant, indirectly relevant, and irrelevant to UAS; additionally, the indirectly relevant airworthiness statements to UAS are provided along with suggested modification. / M.S. / With the popularity of unmanned aircraft systems (UAS), there is a growing need to assess airworthiness for safe operations in shared airspace. Airspace is the available air for aircraft to fly in; most airspaces are regulated and are subject to the jurisdiction of a particular country. In the context of this thesis, shared airspace implies the introduction of UAS into airspace designated for manned aircraft. Airworthiness guidelines are generally statements that state safety requirements to prevent unwanted consequences, such as aircraft accidents. Many governmental agencies such as the U.S. Federal Aviation Administration (FAA) analyzed the risks of UAS to third-parties, all personnel and properties exterior to the aircraft. This thesis concerns the adaptation of existing airworthiness documents written for manned aircraft to UAS. The proposed method has three stages that are applied in sequence to identify relevant and irrelevant airworthiness statements, the building blocks of an airworthiness document, with regard to UAS. This method is applied to MIL-HDBK-516C, Department of Defense Handbook: Airworthiness Certification Criteria, used as a case study. MIL-HDBK-516C is a military handbook used for airworthiness guidance. However, the proposed methodology can be applied to any airworthiness document developed for manned aircraft. This thesis presents a list of all MIL-HDBK-516C airworthiness statements that are directly relevant, indirectly relevant, and irrelevant to UAS; additionally, the indirectly relevant airworthiness statements to UAS are provided along with suggested modification.
146

Development and Implementation of a Flight Test Program for a Geometrically Scaled Joined Wing SensorCraft Remotely Piloted Vehicle

Aarons, Tyler David 20 January 2012 (has links)
The development and implementation of a flight test program for an unmanned aircraft is a multidisciplinary challenge. This thesis presents the development and implementation of a rigorous test program for the flight test of a Geometrically Scaled Joined Wing SensorCraft Remotely Piloted Vehicle from concept through successful flight test. The design methodology utilized in the development of the test program is presented, along with the extensive formal review process required for the approval of the test plan by the Air Force Research Laboratory. The design, development and calibration of a custom instrumentation package is also presented along with the setup, procedure and results from all testing. Results are presented for a wind tunnel test for air data boom calibration, propulsion system static thrust testing, a bifilar pendulum test for experimental calculation of mass moments of inertia, a static structural loading test for structural design validation, a full taxi test and a successful first flight. / Master of Science
147

Método de avaliação de segurança crítica para a integração de veículos aéreos não tripulados no espaço aéreo controlado e não segregado. / Safety assessment method for the unmanned aerial vehicles integration in controlled and non-segregated airspace.

Gimenes, Ricardo Alexandre Veiga 19 June 2015 (has links)
A crescente demanda por Veículos Aéreos Não Tripulados (VANT) tem sido objeto de preocupação por parte das organizações internacionais responsáveis pela segurança do espaço aéreo. O uso de VANT em condições restritas tem sido realizado pelos interessados e envolvidos, mas para que o VANT seja economicamente viável, há a necessidade de regulamentação ainda não existente para sua integração segura no Espaço Aéreo Controlado e Não Segregado. Em função dessa demanda não atendida, nesta Tese foi desenvolvido um método (Safety-VANT) que avalia a segurança crítica da condução do VANT, tarefa realizada por um Sistema Autônomo de Pilotagem. O desenvolvimento do Método Safety-VANT tem como missão fornecer aos órgãos reguladores, assim como aos desenvolvedores de VANT, meios de quantificar a avaliação de segurança na navegabilidade aérea dessas aeronaves. Uma hipótese considerada para o método é a de que o hardware e software (aviônicos, fuselagem, sensores e atuadores) do VANT estejam previamente avaliados e certificados pelos mesmos procedimentos e regras aplicáveis para os equipamentos de aeronaves tripuladas. Essa hipótese permitiu que o desenvolvimento do método de avaliação de segurança Safety-VANT fosse direcionado para avaliar a capacidade de comando autônomo de um VANT para voar, navegar e comunicar de acordo com as regras do sistema de gerenciamento e controle do tráfego aéreo. A aplicação do Safety-VANT foi exercitada sob um VANT hipotético definido como sendo capaz de voar, navegar e se comunicar com o Controle de Tráfego Aéreo e que tenha os equipamentos e estrutura da aeronave (fuselagem) que o constitui, devidamente certificados. Adicionalmente são realizadas considerações sobre como implantar a utilização do Safety-VANT no desenvolvimento de VANT Autônomo com a missão de ser integrado no Espaço Aéreo. / The growing demand for unmanned aerial vehicles (UAV) has been a subject of concern on the part of international organizations responsible for airspace safety. UAV has been used by stakeholders in strict conditions, but for UAV to become economically viable, it is necessary to issue regulations that still do not exist for safe integration in the controlled non-segregated airspace. In the light of this unattended demand, a method (Safety-VANT) was developed in this Thesis to evaluate the critical safety of UAV conduction, a task performed by a Piloting Autonomous System. The development of the Safety-VANT method aims to provide UAV regulators and developers, means of quantifying the safety assessment in the aircraft airworthiness. A hypothesis used in the method considers that the UAV hardware and software (avionics, fairing, sensors and actuators) are previously evaluated and certified by the same procedures and rules applicable to manned aircraft equipment. This hypothesis allowed the Safety-VANT - the developed safety assessment method - to evaluate the ability of an autonomous command embedded in an UAV to fly, to navigate and to communicate, according to the management of air navigation system rules. The Safety-VANT application was exercised under a hypothetical UAV set to being able to fly, to navigate and to communicate with Air Traffic Control and it has the equipment and the certified aircraft structure (fairing). In addition, considerations are performed for deploying the use of Safety-VANT in autonomous UAV development to integrate it into the Airspace.
148

Método de avaliação de segurança crítica para a integração de veículos aéreos não tripulados no espaço aéreo controlado e não segregado. / Safety assessment method for the unmanned aerial vehicles integration in controlled and non-segregated airspace.

Ricardo Alexandre Veiga Gimenes 19 June 2015 (has links)
A crescente demanda por Veículos Aéreos Não Tripulados (VANT) tem sido objeto de preocupação por parte das organizações internacionais responsáveis pela segurança do espaço aéreo. O uso de VANT em condições restritas tem sido realizado pelos interessados e envolvidos, mas para que o VANT seja economicamente viável, há a necessidade de regulamentação ainda não existente para sua integração segura no Espaço Aéreo Controlado e Não Segregado. Em função dessa demanda não atendida, nesta Tese foi desenvolvido um método (Safety-VANT) que avalia a segurança crítica da condução do VANT, tarefa realizada por um Sistema Autônomo de Pilotagem. O desenvolvimento do Método Safety-VANT tem como missão fornecer aos órgãos reguladores, assim como aos desenvolvedores de VANT, meios de quantificar a avaliação de segurança na navegabilidade aérea dessas aeronaves. Uma hipótese considerada para o método é a de que o hardware e software (aviônicos, fuselagem, sensores e atuadores) do VANT estejam previamente avaliados e certificados pelos mesmos procedimentos e regras aplicáveis para os equipamentos de aeronaves tripuladas. Essa hipótese permitiu que o desenvolvimento do método de avaliação de segurança Safety-VANT fosse direcionado para avaliar a capacidade de comando autônomo de um VANT para voar, navegar e comunicar de acordo com as regras do sistema de gerenciamento e controle do tráfego aéreo. A aplicação do Safety-VANT foi exercitada sob um VANT hipotético definido como sendo capaz de voar, navegar e se comunicar com o Controle de Tráfego Aéreo e que tenha os equipamentos e estrutura da aeronave (fuselagem) que o constitui, devidamente certificados. Adicionalmente são realizadas considerações sobre como implantar a utilização do Safety-VANT no desenvolvimento de VANT Autônomo com a missão de ser integrado no Espaço Aéreo. / The growing demand for unmanned aerial vehicles (UAV) has been a subject of concern on the part of international organizations responsible for airspace safety. UAV has been used by stakeholders in strict conditions, but for UAV to become economically viable, it is necessary to issue regulations that still do not exist for safe integration in the controlled non-segregated airspace. In the light of this unattended demand, a method (Safety-VANT) was developed in this Thesis to evaluate the critical safety of UAV conduction, a task performed by a Piloting Autonomous System. The development of the Safety-VANT method aims to provide UAV regulators and developers, means of quantifying the safety assessment in the aircraft airworthiness. A hypothesis used in the method considers that the UAV hardware and software (avionics, fairing, sensors and actuators) are previously evaluated and certified by the same procedures and rules applicable to manned aircraft equipment. This hypothesis allowed the Safety-VANT - the developed safety assessment method - to evaluate the ability of an autonomous command embedded in an UAV to fly, to navigate and to communicate, according to the management of air navigation system rules. The Safety-VANT application was exercised under a hypothetical UAV set to being able to fly, to navigate and to communicate with Air Traffic Control and it has the equipment and the certified aircraft structure (fairing). In addition, considerations are performed for deploying the use of Safety-VANT in autonomous UAV development to integrate it into the Airspace.
149

Vision-Based Emergency Landing of Small Unmanned Aircraft Systems

Lusk, Parker Chase 01 November 2018 (has links)
Emergency landing is a critical safety mechanism for aerial vehicles. Commercial aircraft have triply-redundant systems that greatly increase the probability that the pilot will be able to land the aircraft at a designated airfield in the event of an emergency. In general aviation, the chances of always reaching a designated airfield are lower, but the successful pilot might use landmarks and other visual information to safely land in unprepared locations. For small unmanned aircraft systems (sUAS), triply- or even doubly-redundant systems are unlikely due to size, weight, and power constraints. Additionally, there is a growing demand for beyond visual line of sight (BVLOS) operations, where an sUAS operator would be unable to guide the vehicle safely to the ground. This thesis presents a machine vision-based approach to emergency landing for small unmanned aircraft systems. In the event of an emergency, the vehicle uses a pre-compiled database of potential landing sites to select the most accessible location to land based on vehicle health. Because it is impossible to know the current state of any ground environment, a camera is used for real-time visual feedback. Using the recently developed Recursive-RANSAC algorithm, an arbitrary number of moving ground obstacles can be visually detected and tracked. If obstacles are present in the selected ditch site, the emergency landing system chooses a new ditch site to mitigate risk. This system is called Safe2Ditch.
150

Integration and assessment of a dual core chip - Atmel’s DIOPSIS 940 - for a flight control system.

Majewski, Łukasz January 2009 (has links)
<p>A dual core Atmel DIOPSIS 940 chip consists of a DSP and an ARM9 functional units in a single silicon die. This thesis presents the process of integration and assessment of using this processor in a flight control system. A complete design of the system is provided including a description of the DIOPSIS 940 from the perspective of requirements of the application. The integration of the processor with a typical set of components of a flight control system is provided. Additionally, a suite of programs required for developing software for the system is included. Capabilities of both cores of the processor are analysed in a series of experiments. Computational performance in typical tasks of a flight control system is analyzed and compared. The application of attitude stabilization for a micro-scale UAS is described.</p>

Page generated in 0.0156 seconds