• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 9
  • 3
  • 2
  • 2
  • Tagged with
  • 51
  • 35
  • 24
  • 23
  • 15
  • 15
  • 9
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Hybrid FPGA and GPP Implementation of IEEE 802.15.4 Physical Layer

Jeong, Jeong-O 28 August 2012 (has links)
In this thesis, two different cases of hybrid IEEE 802.15.4 PHY (Physical Layer) implementation are explored. The first case is an FPGA implementation of IEEE 802.15.4 PHY on the Xilinx Spartan-3A DSP FPGA of USRP N210. All of the signal processing tasks are performed on the FPGA, while less complex MAC (Media Access Control) layer tasks are performed in GNU Radio on the host. The second case is an implementation of a multi-channel IEEE 802.15.4 receiver. A four-channel channelizer is implemented on the external Virtex 5 FPGA, while the IEEE 802.15.4 receiver is implemented in GNU Radio on the host. The first case demonstrates how spare resources in USRP's FPGA can be used to implement signal processing task while still interfacing with GNU Radio. The second case builds a platform on which a combination of GNU Radio and an external FPGA can be used for signal processing and USRP as an RF source. This thesis lays out the groundwork for more complex wireless protocols to be implemented on any combination of USRP's FPGA, an external FPGA, and GNU Radio. / Master of Science
32

Softwarové rádio pro emulaci protokolů v RFID / Softwarové rádio pro emulaci protokolů v RFID

Prachař, Petr January 2016 (has links)
This diploma thesis focuses on the design and implementation of an emulator of RFID protocols in a software defined radio. The designed emulator operates in the UHF band (860 MHz – 960 MHz). The main goal of this design is a very fast measurement of power characteristic of tag. The proposed solution is based on implementing the transmitter controls directly into the SDR. Thanks to this solution a reduction of delay between measurements occur compared to the conventional concept, when the transmitter parameters are controlled by the hosted PC. In this thesis, suitable platform based on research is chosen for implementation and also a concept of design is proposed and described herein, which is based on implementation of time critical algorithms directlyinto the software defined radio’s FPGA. The proposed solution was implemented into selected platforms and its functionality was experimentally verified.
33

Evaluation of Software Defined Radio platform with respect to implementation of 802.15.4 Zigbee

Dabcevic, Kresimir January 2011 (has links)
With the development of powerful computational resources such as Digital Signal Processors and Field Programmable Gate Arrays, It has become possible to utilize many radio functions via software. This is the main concept of an up-and-coming technology of Software Defined Radio. In the Thesis, a number of platforms for implementation of Software Defined Radio has been evaluated. Platform that proved to be most suitable for the project was Ettus’ USRP N210. Using the platform, implementation of 802.15.4 Zigbee’s physical layer was done, where experiments whose outputs can later be used to compare performance with respect to "hardware radios" were performed. / Med utvecklingen av enheter med kraftfulla beräkningsegenskaper som “Digital Signal Processors” och “Field Programmable Gate Arrays” har det blivit möjligt att implementera flera radiofunktioner i mjukvara. Det är huvudkonceptet i den uppåtgående teknologin mjukvaru definierad radio.I det här examensarbetet har ett flertal plattformar för mjukvaru definierad radioutvärderats. Plattformen som visade sig vara mest lämplig för projektet var Ettus USRP N210. En implementation av IEEE 802.15.4 Zigbees fysiska lager har realiserats till plattformen. Experiment, vars utdata senare kan användas för att jämföra prestanda mellan mjukvaru definierad radio och hårdvaru baserad radio, har även utförts. / TESLA - Time-critical and Safe wireLess Automation communication / GAUSS - Guaranteed Automation communication Under Severe disturbanceS
34

Physical Layer Approach for Securing RFID Systems

Kaleem, Muhammad Khizer January 2013 (has links)
Radio Frequency IDentification (RFID) is a contactless, automatic identification wireless technology primarily used for identifying and tracking of objects, goods and humans. RFID is not only limited to identification and tracking applications. This proliferating wireless technology has been deployed in numerous securities sensitive applications e.g. access control, e-passports, contactless payments, driver license, transport ticking and health cards. RFID inherits all the security and privacy problems that are related to wireless technology and in addition to those that are specific to RFID systems. The security and privacy protection schemes proposed in literature for wireless devices are mostly secured through symmetric/asymmetric keys encryption/decryption and hash functions. The security of all these cryptographic algorithms depends on computationally complex problems that are hard to compute using available resources. However, these algorithms require cryptographic operations on RFID tags which contradict the low cost demand of RFID tags. Due to limited number of logic gates in tags, i.e., 5K-10K, these methods are not practical. Much research effort has done in attempt to solve consumer's privacy and security problem. Solutions that prevent clandestine inventory are mostly application layer techniques. To solve this problem, a new RFID physical layer scheme has been proposed namely Direct Sequence Backscatter Encryption (DSB Enc). The proposed scheme uses level generator to produce different levels before transmitting the signal to the tag. The tag response to the signal sent by the reader using backscatter communications on the same signal which looks random to the eavesdropper. Therefore eavesdropper cannot extract the information from reader to tag and tag to reader communication using passive eavesdropping. As reader knows the different generated levels added to the carrier signal, it can remove the levels and retrieve the tag's messages. We proposed a lightweight, low-cost and practically secure physical layer security to the RFID system, for a supply chain processing application, without increasing the computational power and tag's cost. The proposed scheme was validated by simulations on GNU Radio and experimentation using SDR and a WISP tag. Our implementation and experimental results validate that DSB Enc is secure against passive eavesdropping, replay and relay attacks. It provides better results in the presence of AWGN channel.
35

Implementation of the Downlink Communication System of the LMU CubeSat

Alrabeeah, Mohammed 01 April 2023 (has links) (PDF)
In this thesis, we present the design and implementation of a CubeSat receiver system using the Universal Software Radio Peripheral (USRP) and GNU Radio. The goal of this project is to develop a low-cost and flexible ground station capable of receiving telemetry and payload data from CubeSats in real time. The CubeSat receiver operates in the UHF frequency range with a center frequency of 435 MHz and uses a software-defined radio (SDR) approach to provide wideband signal processing and demodulation capabilities. The satellite transceiver transmits an Ax.25 Transciever packet every 1 second using the Pumpkin CubeSat kit programmed in MPLab. To achieve this goal, we discuss the design considerations for the receiver system, including the selection of suitable hardware components and the development of custom software blocks in GNU Radio. We also developed the GFSK-based transmitter and receiver in GNU Radio, as well as a tracking system for the satellite. To decode the Ax.25 radio packet transmitted by the Pumpkin CubeSat kit, we developed an Ax.25 deframer in GNU Radio to decode the received signal. Our results demonstrate that the CubeSat receiver is capable of receiving and demodulating AX.25 formatted radio signals from Transciever. Additionally, we show that the receiver system is scalable and can be easily adapted for use with other CubeSat missions. Overall, our work provides a practical solution for CubeSat communication and lays the groundwork for future developments in low-cost CubeSat ground station technology.
36

Wideband RF Front End Daughterboard Based on the Motorola RFIC

Brisebois, Terrence 20 July 2009 (has links)
The goal of software-defined radio (SDR) is to move the processing of radio signals from the analog domain to the digital domain — to use digital microchips instead of analog circuit components. Until faster, higher-precision analog-to-digital (ADCs) and digital-to-analog converters (DACs) become affordable, however, some analog signal processing will be necessary. We still need to convert high-radio frequency (RF) signals that we receive to low intermediate-frequency (IF) or baseband (centered on zero Hz) signals in order for ADCs to sample them and feed them into microchips for processing. The reverse is true when we transmit. Amplification is also needed on the receive side to fully utilize the dynamic range of the ADC and power amplification is needed on the transmit side to increase the power output from the DAC for transmission. Analog filtering is also needed to avoid saturating the ADC or to filter out interference when receiving and to avoid transmitting spurs. The analog frequency conversion, amplification and filtering section of a radio is called the RF front end. This thesis describes work on a new RF front end daughterboard for the Universal Software Radio Peripheral, or USRP. The USRP is a software-radio hardware platform designed to be used with the GNU Radio software radio software package. Using the Motorola RFIC4 chip, the new daughterboard receives RF signals, converts them to baseband and does analog filtering and amplification before feeding the signal into the USRP for processing. The chip also takes transmit signals from the USRP, converts them from baseband to RF and amplifies and filters them. The board was designed and laid out by Randall Nealy. I wrote the software driver for GNU Radio. The driver defines the interface between the USRP and the RFIC chip, controls the physical settings, and calculates and sets the hundreds of variables necessary to operate this extremely complex chip correctly. It allows plug-and-play compatibility with the current USRP daughterboards and supplies additional functions not available in any other daughterboard. / Master of Science
37

Experimentation and physical layer modeling for opportunistic large array-based networks

Jung, Haejoon 22 May 2014 (has links)
The objective of this dissertation is to better understand the impact of the range extension and interference effects of opportunistic large arrays (OLAs), in the context of cooperative routing in multi-hop ad hoc networks. OLAs are a type of concurrent cooperative transmission (CCT), in which the number and location of nodes that will participate in a particular CCT cannot be known a priori. The motivation of this research is that the previous CCT research simplifies or neglects significant issues that impact the CCT-based network performance. Therefore, to develop and design more efficient and realistic OLA-based protocols, we clarify and examine through experimentation and analysis the simplified or neglected characteristics of CCT, which should be considered in the network-level system design. The main contributions of this research are (i) intra-flow interference analysis and throughput optimization in both disk- and strip-shaped networks, for multi-packet OLA transmission, (ii) CCT link modeling focusing on path-loss disparity and link asymmetry, (iii) demonstration of CCT range-extension and OLA-based routing using a software-defined radio (SDR) test-bed, (iv) a new OLA-based routing protocol with practical error control algorithm. In the throughput optimization in presence of the intra-channel interference, we analyze the feasibility condition of spatially pipelined OLA transmissions using the same channel and present numerical results with various system parameters. In the CCT link model, we provide the impact of path-loss disparity that are inherent in a virtual multiple-input-single-output (VMISO) link and propose an approximate model to calculate outage rates in high signal-to-noise-ratio (SNR) regime. Moreover, we present why link asymmetry is relatively more severe in CCT compared to single-input-single-output (SISO) links. The experimental studies show actual measurement values of the CCT range extension and realistic performance evaluation of OLA-based routing. Lastly, OLA with primary route set-up (OLA-PRISE) is proposed with a practical route recovery technique.
38

Diffusive Acoustic Confocal Imaging System (DACI): a novel method for prostate cancer diagnosis

Yin, Wen 21 December 2017 (has links)
This thesis is part of the project undertaken to develop a diffusive acoustic confocal imaging system (DACI) that aims to differentiate between healthy and the diseased tissues in the prostate. Speed of sound is chosen as the tool to quantify the alterations in the tissues’ mechanical properties at different pathological states. The current work presents a scanning configuration that features three components: an acoustic emitter, a focusing mirror and a point receiver. The focusing mirror brings the collimated acoustic beam from the emitter into a focused probe position, which needs to be located within the bladder or at the near surface of the prostate. This position is introduced as the virtual source, where the acoustic intensity diffusively scatters into all directions and propagates through the specimen. The system design was simulated using ZEMAX and COMSOL to validate the concept of the virtual source. Lesions in a phantom prostate were found in the simulated amplitude and phase images. The speed of sound variation was estimated from the 1D unwrapped phase distribution indicating where the phase discontinuities existed. The measurements were conducted in a water aquarium using the tissue-mimicking prostate phantom. Two-dimensional projected images of the amplitude and the phase distributions of the investigating acoustic beam were measured. A USRP device was set up as the signal generation and acquisition device for the experiment. Two different signal extractions methods were developed to extract the amplitude and the phase information. The experimental results were found to generally agree with the simulation results. The proof-of-concept design was successful in measuring both the phase and the amplitude information of the acoustic signal passing through the prostate phantom. In future, the 2D/3D speed of sound variation needs to be estimated by an appropriate image reconstruction method. / Graduate / 2018-12-06
39

Optimalizace pokusného NQR spektrometru / Optimization of the experimental NQR spectrometer

Segiňák, Ján January 2017 (has links)
The thesis deals with the NQR spectroscopy, which is one of the modern non-destructive measurement and diagnostic methods for the characterization of various materials. It is using a quadrupole moment - a property of atomic nuclei of certain isotopes. A method of nuclear quadrupole resonance (NQR) is in principle very similar to nuclear magnetic resonance (NMR). Thesis in the theoretical part analyse the principles of NMR and NQR, describes the possible use of this method to detect for example explosives, drugs, and other chemicals. In the following chapters are analysed the key parameters of NQR spectrometer and the principle of the chosen measurement method. The practical part deals with the individual components of NQR spectrometer, the design of possible improvements and programming of the measuring sequence. In the final chapter are processed the measurements of the submitted samples.
40

Modulátor a demodulátor s více nosnými pro softwarově definované rádio / Multicarrier modulator and demodulator for software defined radio

Klučka, Jaroslav January 2010 (has links)
This thesis deals with computer simulation of the communication chain using the OFDM modulation. In the beginning of my thesis there is a brief description of digital modulations, especially OFDM. The model of the transmitter, radio channel and receiver, including a simple timing and frequency synchronization and equalization is designed and simulated in the Matlab environment. There is a designed communication system implemented into USRP development board in the Simulink environment. The development board could not work simultaneously as a transmitter and as a receiver. Function of the transmitter was verified by measuring on spectrum analyzer. Testing OFDM signal using the arbitrary waveform generator CompuGen 4302 was generated for the verification of the function of the receiver. Testing signal was received and demodulated on the development board which works as a receiver.

Page generated in 0.0294 seconds