• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Polykrystalická keramika transparentní pro viditelné a infračervené vlnové délky / Transparent polycrystalline ceramics at visible and infrared wavelenghts

Veselý, Jan January 2010 (has links)
his thesis deals with preparation of transparent ceramic sheets made out of sub-µm alumina powder. Green bodies are prepared by ultraviolet (UV) curing of UV curable resin containing ceramic powder followed by debinding of organic parts at elevated temperature. High relative density of green bodies is essential for reduction of shrinkage during subsequent sintering process. Therefore high solids loading dispersions containing > 57 vol% ceramic particles are used. To reach transparent behaviour, porosity within the sheets must be reduced completely. Therefore hot isostatic pressing (HIP) is used as a final operation. Finally, light transmission and hardness measurements are presented. Possibilities of making high resolution microstructures using maskless lithography and some suggestions for use of the UV curing technique for production of complex-shaped 3D structures are briefly mentioned.
12

Modification of Tung Oil for Bio-Based Coating

Thanamongkollit, Narin 02 September 2008 (has links)
No description available.
13

METHACRYLATED POLY(ETHYLENE GLYCOL)S AS PRECURSORS FOR SUPERPLASTICIZERS AND UV-CURABLE ELECTRICAL CONTACT STABILIZATION MATERIALS

Javadi, Ali January 2017 (has links)
No description available.
14

In-situ Monitoring of Photopolymerization Using Microrheology

Slopek, Ryan Patrick 18 July 2005 (has links)
Photopolymerization is the basis of several multi-million dollar industries including films and coating, inks, adhesives, fiber optics, and biomaterials. The fundamentals of the photopolymerization process, however, are not well understood. As a result, spatial variations of photopolymerization impose significant limitations on applications in which a high spatial resolution is required. To address these issues, microrheology was implemented to study the spatial and temporal effects of free-radical photopolymerization. In this work a photosensitive, acrylate resin was exposed to ultraviolet light, while the Brownian motion of micron sized, inert fluorescent tracer particles was tracked using optical videomicroscopy. Statistical analysis of particle motion yielded data that could then be used to extract rheological information about the embedding medium as a function of time and space, thereby relating UV exposure to the polymerization and gelation of monomeric resins. The effects of varying depth, initiator concentration, inhibitor concentration, composition of the monomer, and light intensity on the gelation process were studied. The most striking result is the measured difference in gelation time observed as a function of UV penetration depth. The observed trend was found to be independent of UV light intensity and monomer composition. The intensity results were used to test the accuracy of energy threshold model, which is used to empirically predict photo-induced polymerization. The results of this research affirm the ability of microrheology to provide the high spatial and temporal resolution necessary to accurately monitor the photopolymerization process. The experimental data provide a better understanding of the photo-induced polymerization, which could lead to expanded use and improved industrial process optimization. The use of microrheology to monitor photopolymerization can also aid in the development of predictive models and offer the ability to perform in-situ quality control of the process.
15

Chemically and Photochemically Crosslinked Networks and Acid-Functionalized Mwcnt Composites

Nebipasagil, Ali 21 June 2011 (has links)
PTMO-urethane and urea diacrylates (UtDA, UrDA) were synthesized from a two-step reactions of bis (4-isocyanatocyclohexyl) methane (HMDI) with either α,Ï -hydroxy-terminated poly (tetramethylene oxide) (PTMO Mn 250, 1000, 2000 and 2900 g/mol) or α,Ï -aminopropyl-terminated PTMO and 2-hydroxyethyl acrylate (HEA). PTMO-based ester precursors (EtDA) were also synthesized from α,Ï -hydroxy-terminated PTMO (Mn 1000 and 2000 g/mol). Two bis acetoacetates were synthesized from acetoacetylation of 1,4-butanediol and 250 g/mol hydroxy-terminated PTMO with tert-butyl acetoacetate. ¹H NMR spectroscopy confirmed the structure and average molecular weights (Mn)of diacrylates. Mn of these precursors were in the range of 950 to 3670 g/mol by ¹H NMR. The rheological properties of diacrylates were studied and activation energies for flow were calculated. Activation energies increased with increasing Mn and hydrogen-bond segment content. Michael carbon addition was employed to covalently crosslink the precursors resulting in networks with gel fractions better than 90%. DSC and DMA experiments revealed that networks had a broad distribution of glass transition temperatures depending on Mn and degree of hydrogen bonding present in the diacrylates. Their Tg's varied from -61 ºC to 63 ºC depending on the crosslinking density and hydrogen-bonding segment content. TGA revealed that UtDA and UrDA networks had an improved thermal stability compared to their EtDA counterparts. Tensile properties showed a variation depending on the structure and Mn of diacrylate and BisAcAc precursors. The storage moduli of networks precursor change from 25.3 MPa to 2.0 MPa with increasing Mn of the urethane diacrylate Elongation at break increased from 255% to 755 % for the same networks. The Young's moduli increased from 3.27 MPa for EtDA 2000 to 311.1 MPa for UrDA 2000 which was attributed to increasing degree of hydrogen-bonding. Acid functionalization of C70 P Baytubes multiwalled carbon nanotubes (MWCNT) generated acid-functionalized nanotubes (MWCNT-COOH). Suspension of MWCNT-COOH in organic solvents (chloroform, toluene, THF, DMF and 2-propanol) were prepared. DLS indicated average particle diameters of MWCNT-COOH in DMF and in 2-propanol were 139 nm and 162 nm respectively. FESEM of suspensions revealed aggregate free dispersion of MWCNT-COOH in DMF and 2-propanol. MWCNT-COOH containing composite networks were prepared. FESEM images of fracture surfaces of UtDA showed MWCNT-COOH were well-dispersed in the composites. DMA showed an increase in the rubbery plateau modulus which correlated with the MWCNT-COOH content in the networks. Tensile testing also revealed a relationship between MWCNT-COOH content and young's moduli and strain at break of networks. Storage moduli of networks increased from 25 MPa to 211 MPa with increasing MWCNT-COOH content whereas elongation at break decreased from 255 % to 146 %. UtDAs and pentaerythritol tetraacrylate (PETA) were crosslinked under UV radiation (6 passes, 1.42 ± 0.05 W.cm2 for each pass) in the presence of 2,2-dimethoxy-2-phenylacetophenone (DMPA) (1 wt. % of the mixture) UV initiator. DMA demonstrated the presence of broad glass transition regions with a range of Tg's which varied from -60 °C to -30°C. Tensile testing also revealed the relationship between Young's moduli, strain at break and the molecular weight of the diacrylates. The increasing molecular weight of urethane diacrylate precursors caused a drop in the storage moduli of networks from 15.8 MPa to 1.4 MPa and an increase in elongation at break from 76 % to 132 %. / Master of Science
16

Investigation and characterization of polythiol (meth)acrylate based resins for UV-curing applications / Investigation et caractérisation de matériaux polymères photo-réticulés à base de résines polythiol (meth)acrylate pour des applications de photopolymérisation industrielle

Belbakra, Zakaria 19 December 2013 (has links)
L’objectif de cette thèse est de développer des matériaux polymérisés par rayonnement ultra-violet possédant une bonne balance des propriétés thermomécaniques entre résistance à la température, rigidité (strength) et résistance à l’impact. Une direction vers cet objectif est l’utilisation de résines (meth)acrylate modifiées avec des thiols polyfonctionnels. Cependant, les thiol-ene en général sont sujets à un problème de polymérisation prématurée incontrôlée même à l’abri de la lumière. Ce problème doit être traité puisque celui-ci conditionne le succès des thiol-ene dans le domaine des photopolymères. La première partie de cette thèse concerne l’élaboration de résine (meth)acrylate modifiée par l’incorporation d’un polythiol, le pentaerythritol tetrakismercaptopropionate (PETMP), à différents ratio. Les propriétés thermomécaniques et photochimiques de ces résines sont à l’étude. La seconde partie traite du problème de polymérisation prématurée incontrôlée des thiol-ene. Une étude de stabilité thermique aboutissant à des résultats très encourageant est proposée. Finalement, la dernière partie porte sur la caractérisation des réseaux photo-réticulés par pyrolyse-GC/MS. La compréhension de la constitution des réseaux tridimensionnels devraient apportés des avancées dans l’élaboration de nouveaux matériaux. Une nouvelle méthode de caractérisation utilisant la pyrolyse-GC/MS directe à multi-étapes est développée. Enfin, des résultats sur l’application de la méthode sur des matériaux à base de (meth)acrylate difonctionnel photopolymérisés ainsi qu’une tentative de caractérisation de matériaux à base de polythiol/(meth)acrylates photopolymérisés sont reportés puis discutés. / This thesis fall within an approach aiming to develop UV-processed materials having a good thermo-mechanical properties balance between strength, temperature resistance and impact resistance. A direction toward this objective is the use of photocurable (meth)acrylate resins modified with polyfunctional thiols. Indeed, thiol-ene chemistry is known to have poor sensitivity toward oxygen inhibition, to improve the dimensional stability and toughness properties of photocured materials. However, thiol-ene resins are subjected to premature uncontrolled dark polymerization, an issue that has to be solved for their success in the photopolymers area. The first part of this work is focused on the thermo-mechanical and the photopolymerization properties investigation of a pentaerythritol tetrakismercaptopropionate (PETMP) modified (meth)acrylate based resin by looking at different ratio of polythiol/(meth)acrylate. The second part is dedicated to the understanding of the thermal instability of such systems and to the solving of this issue. Finally, a special interest is brought to the characterization of photopolymeric networks by pyrolysis-GC/MS. The lake of deep understanding and view about how the cured networks are really constituted due to the difficulty to analyze insoluble cured polymers, prevents improvements in the formulation of high performance materials. Further information on cured networks constitution could bring useful information for the elaboration of new materials. A new characterization method based on direct multi-step pyrolysis-GC/MS is developed and an attempt on the characterization of polythiol (meth)acrylate material by Py-GC/MS is reported and discussed.
17

Chemistry and Morphology of Polymer Thin Films for Electro-Optical Application

Simon, Darren, s3027589@student.rmit.edu.au January 2006 (has links)
Thin polymer films and their properties have been investigated. The characteristics of crystalline polymers according to film thickness have been improved using polycaprolactone (PCL). The melting enthalpy of PCL has increased when the film thickness decreased and the peak melting temperature showed no significant changes with film thickness. Film thickness variation influenced surface roughness and crystal size. Optical microscope images showed the rougher surface of thicker films. The spinning time has shown no influence on film thickness and no significant changes to surface roughness. Thin films of block copolymers were used in the surface modification study; films studied included poly(styrene-b-butadiene-b-styrene) (SBS) and poly(styrene-b-isoprene-b-styrene) (SIS) and their surface modifications have been controlled using different methods of treatment. Films of SIS heated at different temperatures have shown different surface texture and roughness. Films treated at low temperature (45 °C) had smooth surfaces when compared with films heated at high temperature (120 °C and 160 °C). Phase separation of SIS heated at (120 °C and 160 °C) caused bulges of different sizes to cover the surface. The height and width of the bulges showed variation with film thickness and heating. Substrate interaction with SBS and SIS block copolymer films showed different surface texture when using the same type of substrate and different texture were obtained when SBS solutions were spun onto different substrates. It has been demonstrated that using different solvents in copolymer preparation caused different texture. Thermal and surface property variations with film thickness have been improved using amorphous polymers. Surface roughness of poly(methyl methacrylate) PMMA and disperse red 1-poly(methyl methacrylate) DR1-PMMA, PMMA has improved using thickness variation. Glass transition temperature measurement has increased when film thickness was increased. The glass transition temperature (Tg) and surface roughness of UV15 UV - curable coating polymer has been modified using UV curing and heating methods. Tg variation was observed when curing time and curing intensity were changed causing the optical properties of the polymer to be more variable. A plasma etcher caused wrinkles to occur on the surface of unheated UV15. Tg of UV15 increased when curing time increased. The Fourier Transform Infrared Spectroscopy (FTIR) spectra of cured UV15 film have shown peak variations of the ester and carbon double bond regions over the range of 1850-1700 cm-1. Urethane-Urea (UU) Polymer thin films were used to investigate optical properties and develop an optical waveguide. Absorption and transmission properties of light using non-linear optical (NLO) polymer was investigated and used in optical waveguide fabrication. Refractive indices were measured to examine UU films at two different wavelengths. A UU film of 1 µm thickness caused a maximum absorption at max = 471 nm also obtained at 810 nm wavelength. Many methods of fabrication were used; photolithography, plasma etching in a barrel reactor and thin film deposition using sputtering and evaporation. Etched depths from 1 μm to 100 μm were obtained. An optical waveguide has been prepared using plasma etching of a cured UV15 as a cladding layer on a silicon substrate.
18

Synthesis and Properties of Branched Semi-Crystalline Thermoset Resins

Claesson, Hans January 2003 (has links)
<p>This thesis describes the synthesis and characterization ofbranched semi-crystalline polymers. Included in this work isthe SEC characterization of a series of dendrimers. Thebranched semi-crystalline polymers were synthesized in order toinvestigate the concept of their use as powder coatings resins.This concept being that the use of branched semi-crystallinepolymers in a UV-cured powder coating system may offer a lowertemperature alternative thus allowing the use of heat sensitivesubstrates and the added benefit of a reduced viscositycompared to linear polymers.</p><p>A series of branched poly(ε-caprolactone)’s (PCL)(degree of polymerization: 5-200) initiated from hydroxylfunctional initiators were synthesized. The final architectureswere controlled by the choice of initiator structure;specifically the dendritic initiators yielded starbranchedPCL’s while the linear initiator yielded comb-branchedPCL’s. The dendritic initiators utilized were: (1) a3rd-generation Boltorn H-30, commercially availablehyperbranched polyester with approximately 32 hydroxyl groups,(2) a 3rd-generation dendrimer with 24 hydroxyl groups, and (3)a 3rd-generation dendron with 8 hydroxyl groups. Linear PCL wassynthesized for comparison. All dendritic initiators are basedon 2,2- bis(methylol) propionic acid. The comb-branchedpolymers were initiated from a modified peroxide functionalpolyacrylate. The resins were end-capped withmethylmethacrylate in order to produce a cross-linkable system.The polymers and films were characterized using 1H NMR, 13CNMR, SEC, DMTA, DSC, FT-IR, FT-Raman, rheometry and a rheometercoupled to a UV-lamp to measure cure behavior.</p><p>The star-branched PCL’s exhibited considerably lowerviscosities than their linear counterparts with the samemolecular weight for the molecular region investigated (2-550kg mol-1). It was also found that the zero shear viscosityincreased roughly exponentially with M.</p><p>The PCL star-branched resins are semi-crystalline and theirmelting points (Tm) range from 34-50°C; films can beformed and cured below 80°C. The viscoelastic behaviourduring the cure showed that the time to reach the gel point, afew seconds, increased linearly with molecular weight. Thecrossover of G’and G’’was used as the gelpoint. Measurement of mechanical properties of films showedthat the low molecular weight polymers were amorphous whilethose with high molecular weight were crystalline after cure.The polymerization of 5,5-dimethyl-1,3-dioxane-2-one (NPC) fromoligo- and multifunctional initiators was evaluated utilizingcoordination and cationic polymerization. Two tin basedcatalysts, stannous(II) 2-ethylhexanoate and stannous(II)trifluoromethane sulfonate, were compared with fumaric acid.Fumaric acid under bulk conditions resulted in lowerpolydispersity and less chance of gelling. The synthesis ofstar-branched polymers was confirmed by SEC data. The starpolymers exhibited a Tg at 20-30°C and a Tm at about100°C.</p><p>All semi-crystalline resins exhibited a fast decrease inviscosity at Tm. Blends of combbranched semi-crystalline resinsand amorphous resins exhibited a transition behavior inbetweenthat of pure semi-crystalline resins and that of amorphousresins.</p><p>The SEC characterization of a series of dendrimers withdifferent cores and terminal groups showed that the core had animpact on the viscosimetric radius of the core while theterminal groups appeared to have no effect.</p><p><b>Keywords:</b>star-branched, semi-crystalline,comb-branched, ring-opening polymerization,poly(ε-caprolactone), dendritic, thermoset, lowtemperature curing, powder coating, UVcuring,poly(5,5-dimethyl-1,3-dioxane-2-one), size exclusionchromatography, rheology, dendritic aliphatic polyester</p>
19

Synthesis and Properties of Branched Semi-Crystalline Thermoset Resins

Claesson, Hans January 2003 (has links)
This thesis describes the synthesis and characterization ofbranched semi-crystalline polymers. Included in this work isthe SEC characterization of a series of dendrimers. Thebranched semi-crystalline polymers were synthesized in order toinvestigate the concept of their use as powder coatings resins.This concept being that the use of branched semi-crystallinepolymers in a UV-cured powder coating system may offer a lowertemperature alternative thus allowing the use of heat sensitivesubstrates and the added benefit of a reduced viscositycompared to linear polymers. A series of branched poly(ε-caprolactone)’s (PCL)(degree of polymerization: 5-200) initiated from hydroxylfunctional initiators were synthesized. The final architectureswere controlled by the choice of initiator structure;specifically the dendritic initiators yielded starbranchedPCL’s while the linear initiator yielded comb-branchedPCL’s. The dendritic initiators utilized were: (1) a3rd-generation Boltorn H-30, commercially availablehyperbranched polyester with approximately 32 hydroxyl groups,(2) a 3rd-generation dendrimer with 24 hydroxyl groups, and (3)a 3rd-generation dendron with 8 hydroxyl groups. Linear PCL wassynthesized for comparison. All dendritic initiators are basedon 2,2- bis(methylol) propionic acid. The comb-branchedpolymers were initiated from a modified peroxide functionalpolyacrylate. The resins were end-capped withmethylmethacrylate in order to produce a cross-linkable system.The polymers and films were characterized using 1H NMR, 13CNMR, SEC, DMTA, DSC, FT-IR, FT-Raman, rheometry and a rheometercoupled to a UV-lamp to measure cure behavior. The star-branched PCL’s exhibited considerably lowerviscosities than their linear counterparts with the samemolecular weight for the molecular region investigated (2-550kg mol-1). It was also found that the zero shear viscosityincreased roughly exponentially with M. The PCL star-branched resins are semi-crystalline and theirmelting points (Tm) range from 34-50°C; films can beformed and cured below 80°C. The viscoelastic behaviourduring the cure showed that the time to reach the gel point, afew seconds, increased linearly with molecular weight. Thecrossover of G’and G’’was used as the gelpoint. Measurement of mechanical properties of films showedthat the low molecular weight polymers were amorphous whilethose with high molecular weight were crystalline after cure.The polymerization of 5,5-dimethyl-1,3-dioxane-2-one (NPC) fromoligo- and multifunctional initiators was evaluated utilizingcoordination and cationic polymerization. Two tin basedcatalysts, stannous(II) 2-ethylhexanoate and stannous(II)trifluoromethane sulfonate, were compared with fumaric acid.Fumaric acid under bulk conditions resulted in lowerpolydispersity and less chance of gelling. The synthesis ofstar-branched polymers was confirmed by SEC data. The starpolymers exhibited a Tg at 20-30°C and a Tm at about100°C. All semi-crystalline resins exhibited a fast decrease inviscosity at Tm. Blends of combbranched semi-crystalline resinsand amorphous resins exhibited a transition behavior inbetweenthat of pure semi-crystalline resins and that of amorphousresins. The SEC characterization of a series of dendrimers withdifferent cores and terminal groups showed that the core had animpact on the viscosimetric radius of the core while theterminal groups appeared to have no effect. Keywords:star-branched, semi-crystalline,comb-branched, ring-opening polymerization,poly(ε-caprolactone), dendritic, thermoset, lowtemperature curing, powder coating, UVcuring,poly(5,5-dimethyl-1,3-dioxane-2-one), size exclusionchromatography, rheology, dendritic aliphatic polyester / <p>NR 20140805</p>
20

Synthèse, caractérisation et photoréactivité d'oligomères hyperbranchés

Mievis, Isabelle 29 August 2006 (has links)
Depuis une dizaine d'années, les polymères hyperbranchés sont apparus dans la littérature. Ils possèdent un grand nombre de branchements ainsi qu'un grand nombre de groupes terminaux. La structure globulaire des polymères hyperbranchés les empêche de former des enchevêtrements. Il en résulte un avantage décisif pour leur application sous forme de revêtement de surface: les polymères hyperbranchés ont une viscosité plus faible à l'état fondu que les polymères linéaires. Cela permet aisément de les étaler sous forme de films minces sans utiliser de solvant. De plus, les polymères hyperbranchés possèdent un grand nombre de groupes terminaux qui peuvent être fonctionnalisés avec des monomères photoréticulables.<p>Le but du travail de thèse est d'obtenir de nouveaux revêtements de surface, à partir de polymères hyperbranchés ou de polymères fortement branchés, qui trouveront leur application dans l'industrie chimique.<p><p>La thèse s'articule autour de trois chapitres de synthèse suivis d'un chapitre traitant de la photoréactivité des oligomères linéaires, fortement branchés, et hyperbranchés.<p><p>La première approche de synthèse envisagée est la copolymérisation alternante radicalaire. Divers maléimides ont été engagés dans des copolymérisations radicalaires avec des allyléthers sans succès. <p>Lorsque ces derniers sont remplacés par des vinyls éthers, une copolymérisation alternante est observée. Néanmoins, une importante irreproductibilité est constatée, certains batchs donnant lieu à une gélification.<p><p>La seconde voie de synthèse étudiée est l'approche classique de polycondensation de monomères de type AB2 .Le monomère AB2 est obtenu par addition de Michael de la diéthanolamine sur l'acrylate de méthyle. La polycondensation est concomitante avec l'acrylation des fonctions alcools. La compétition entre ces deux réactions limite les masses molaires accessibles bien que les réactions de transestérification soient catalysées par des dérivés du Zr et que la stoechiométrie ait été variée.<p><p>La troisième voie de synthèse se base aussi sur la réaction de Michael. Des oligomères fortement branchés sont obtenus à partir de 1,6-hexanedioldiacrylate et d'éthylènediamine. Leurs analogues linéaires sont synthétisés en remplaçant l'éthylènediamine par la propylamine. Lors de ces synthèses, il est apparu que les oligomères fortement branchés ont une viscosité supérieure à celle des oligomères linéaires!<p><p>Les oligomères hyperbranchés et acrylés, les oligomères linéaires et leurs analogues fortement branchés ont été étudiés du point de vue de leur photoréticulation sous rayonnement UV. Contrairement à ce qui était attendu, ils se sont montrés moins réactifs que les produits les plus performants de Cytec-Surface Specialties. Lors de cette étude, l'effet bénéfique des mines tertiaires sur l'inhibition par l'oxygène est apparu plus complexe que décrit dans la littérature. / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.0719 seconds