61 |
Multi-band OFDM UWB receiver with narrowband interference suppressionKelleci, Burak 15 May 2009 (has links)
A multi band orthogonal frequency division multiplexing (MB-OFDM) compatible
ultra wideband (UWB) receiver with narrowband interference (NBI) suppression
capability is presented. The average transmit power of UWB system is limited to
-41.3 dBm/MHz in order to not interfere existing narrowband systems. Moreover, it
must operate even in the presence of unintentional radiation of FCC Class-B compatible
devices. If this unintentional radiation resides in the UWB band, it can jam the
communication. Since removing the interference in digital domain requires higher dynamic
range of analog front-end than removing it in analog domain, a programmable
analog notch filter is used to relax the receiver requirements in the presence of NBI.
The baseband filter is placed before the variable gain amplifier (VGA) in order to reduce
the signal swing at the VGA input. The frequency hopping period of MB-OFDM
puts a lower limit on the settling time of the filter, which is inverse proportional to
notch bandwidth. However, notch bandwidth should be low enough not to attenuate
the adjacent OFDM tones. Since these requirements are contradictory, optimization
is needed to maximize overall performance. Two different NBI suppression schemes
are tested. In the first scheme, the notch filter is operating for all sub-bands. In the
second scheme, the notch filter is turned on during the sub-band affected by NBI.
Simulation results indicate that the UWB system with the first and the second suppression
schemes can handle up to 6 dB and 14 dB more NBI power, respectively. The results of this work are not limited to MB-OFDM UWB system, and can be
applied to other frequency hopping systems.
|
62 |
Generalized Maximum Likelihood Algorithm for TOA Estimation in Multi-band OFDM UWB SystemsYang, Shih-Wei 26 August 2005 (has links)
The fine time resolution of ultra wide-band (UWB) systems enables applications in TOA/TDOA based high precision wireless indoor location. The main purpose of this thesis is to investigate TOA estimation in multi-band OFDM UWB systems. We propose an effective and simplified TOA estimation algorithm for multi-band OFDM standard. The proposed algorithm is based on the generalized maximum-likelihood (GML) algorithm.
The TOA estimation algorithm utilizes the preamble signal in multi-band OFDM system. We modify the realization method of GML algorithm according to the preamble signal properties and apply it to multi-band OFDM system. From simulation results, by comparing with cross correlation algorithm and the original GML algorithm, the proposed algorithm has ability to mitigate multipath interference and improves TOA estimation accuracy. In this thesis we also discuss the thresholds setting and SNR estimation problems to make the proposed algorithm more realizable.
|
63 |
Radio frequency circuits for wireless receiver front-endsXin, Chunyu 01 November 2005 (has links)
The beginning of the 21st century sees great development and demands on wireless communication technologies. Wireless technologies, either based on a cable replacement or on a networked environment, penetrate our daily life more rapidly than ever. Low operational power, low cost, small form factor, and function diversity are the crucial requirements for a successful wireless product. The receiver??s front-end circuits play an important role in faithfully recovering the information transmitted through the wireless channel.
Bluetooth is a short-range cable replacement wireless technology. A Bluetooth receiver architecture was proposed and designed using a pure CMOS process. The front-end of the receiver consists of a low noise amplifier (LNA) and mixer. The intermediate frequency was chosen to be 2MHz to save battery power and alleviate the low frequency noise problem. A conventional LNA architecture was used for reliability. The mixer is a modified Gilbert-cell using the current bleeding technique to further reduce the low frequency noise. The front-end draws 10 mA current from a 3 V power supply, has a 8.5 dB noise figure, and a voltage gain of 25 dB and -9 dBm IIP3.
A front-end for dual-mode receiver is also designed to explore the capability of a multi-standard application. The two standards are IEEE 802.11b and Bluetooth. They work together making the wireless experience more exciting. The front-end is designed using BiCMOS technology and incorporating a direct conversion receiver architecture. A number of circuit techniques are used in the front-end design to achieve optimal results. It consumes 13.6 mA from a 2.5 V power supply with a
5.5 dB noise figure, 33 dB voltage gain and -13 dBm IIP3.
Besides the system level contributions, intensive studies were carried out on the development of quality LNA circuits. Based on the multi-gated LNA structure, a CMOS LNA structure using bipolar transistors to provide linearization is proposed. This LNA configuration can achieve comparable linearity to its CMOS multi-gated counterpart and work at a higher frequency with less power consumption. A LNA using an on-chip transformer source degeneration is proposed to realize input impedance matching. The possibility of a dual-band cellular application is studied. Finally, a study on ultra-wide band (UWB) LNA implementation is performed to explore the possibility and capability of CMOS technology on the latest UWB standard for multimedia applications.
|
64 |
A Study on Receiver Design in the Ultra-Wide Band ChannelsChiu, Chih-hsien 12 September 2008 (has links)
Ultra-wideband (UWB) system is an indoor communication system, high data rate transmission within 5-10m transmitted range. This system suffers from high dense multipath channels impairment. If the spreading code is not orthogonal in dense multipath channels, severe inter-symbol interference (ISI) will degrade the system performance. In this thesis, we will discuss the performance of various receivers in ultra-wideband channels.
Rake receiver can collect signal energy from different multipath. However, the imperfect orthogonal property of spreading code will cause severe ISI and degrade the performance of Rake receiver. Least mean square (LMS) chip equalizer not only combines the energy from different multipath, but also suppresses ISI. But, the complexity is too high to realize.
In this thesis, we combine Rake receiver with ISI canceller to enhance system performance. If the canceller is before Rake receiver, we define it as ISIC RAKE. If the canceller is behind Rake receiver, we define it as RAKE ISIC. In the ISI canceller, not only ISI caused by preceding bits is cancelled, but also the ISI caused by following bit is cancelled. In multiuser cases, we are also canceling multi-access interference (MAI). From simulation results, the proposed method outperforms conventional Rake receiver, Rake receiver combined with LMS symbol equalizer, and LMS chip equalizer. The complexity of proposed method is lower than LMS chip equalizer.
|
65 |
Investigation of Microwave Antennas with Improved PerformancesZhou, Rongguo January 2010 (has links)
This dissertation presents the investigation of antennas with improved performances at microwave frequencies. It covers the following three topics: the study of the metamaterial with near-zero index of refraction and its application in directive antenna design, the design technique of a wideband circularly polarized patch antenna for 60GHz wireless application and the investigation of a novel direction of arrival (DOA) estimation technique inspired by human auditory system. First, the metamaterial composed of two-dimensional (2-D) metallic wire arrays is investigated as an effective medium with an effective index of refraction less than unity (n(eff) < 1). The effective medium parameters (permittivity ε(eff), permeability μ(eff) and n(eff)) of a wire array are extracted from the finite-element simulated scattering parameters and verified through a 2-D electromagnetic band gap (EBG) structure case study. A simple design methodology for directive monopole antennas is introduced by embedding a monopole within a metallic wire array with n(eff) < 1 at the antenna operating frequencies. The narrow beam effect of the monopole antenna is demonstrated in both simulation and experiment at X-band (8 – 12 GHz). The measured antenna properties including return loss and radiation patterns are in good agreement with simulation results. Parametric studies of the antenna system are performed. The physical principles and interpretations of the directive monopole antenna embedded in the wire array medium are also discussed. Second, a fully packaged wideband circularly polarized patch antenna is designed for 60GHz wireless communication. The patch antenna incorporates a diagonal slot at the center and features a superstrate and an air cavity backing to achieve desired performances including wide bandwidth, high efficiency and low axial ratio. The detailed design procedure of the circularly polarized antenna, including the design of the microstrip-fed patch antenna and the comparison of the performances of the antenna with different feeding interfaces, is described. The experimental results of the final packaged antenna agree reasonably with the simulation results. Third, an improved two-antenna direction of arrival (DOA) estimation technique is explored, which is inspired by the human auditory system. The idea of this work is to utilize a lossy scatter, which emulates the low-pass filtering function of the human head at high frequency, to achieve more accurate DOA estimation. A simple 2-monopole example is studied and the multiple signal classification (MUSIC) algorithm is applied to calculate the DOA. The improved estimation accuracy is demonstrated in both simulation and experiment. Furthermore, inspired by the sound localization capability of human using just a single ear, a novel direction of arrival estimation technique using a single UWB antenna is proposed and studied. The DOA estimation accuracies of the single UWB antenna are studied in the x-y, x-z and y-z planes with different Signal to Noise Ratios (SNR). The proposed single antenna DOA technique is demonstrated in both simulation and experiment, although with reduced accuracy comparing with the case of two antennas with a scatter in between. At the end, the conclusions of this dissertation are drawn and possible future works are discussed.
|
66 |
Contribution à la conception d'un système de radio impulsionnelle ultra large bande intelligentAkbar, Rizwan 15 January 2013 (has links) (PDF)
Face à une demande sans cesse croissante de haut débit et d'adaptabilité des systèmes existants, qui à son tour se traduit par l'encombrement du spectre, le développement de nouvelles solutions dans le domaine des communications sans fil devient nécessaire afin de répondre aux exigences des applications émergentes. Parmi les innovations récentes dans ce domaine, l'ultra large bande (UWB) a suscité un vif intérêt. La radio impulsionnelle UWB (IR-UWB), qui est une solution intéressante pour réaliser des systèmes UWB, est caractérisée par la transmission des impulsions de très courte durée, occupant une largeur de bande allant jusqu'à 7,5 GHz, avec une densité spectrale de puissance extrêmement faible. Cette largeur de bande importante permet de réaliser plusieurs fonctionnalités intéressantes, telles que l'implémentation à faible complexité et à coût réduit, la possibilité de se superposer aux systèmes à bande étroite, la diversité spatiale et la localisation très précise de l'ordre centimétrique, en raison de la résolution temporelle très fine.Dans cette thèse, nous examinons certains éléments clés dans la réalisation d'un système IR-UWB intelligent. Nous avons tout d'abord proposé le concept de radio UWB cognitive à partir des similarités existantes entre l'IR-UWB et la radio cognitive. Dans sa définition la plus simple, un tel système est conscient de son environnement et s'y adapte intelligemment. Ainsi, nous avons tout d'abord focalisé notre recherché sur l'analyse de la disponibilité des ressources spectrales (spectrum sensing) et la conception d'une forme d'onde UWB adaptative, considérées comme deux étapes importantes dans la réalisation d'une radio cognitive UWB. Les algorithmes de spectrum sensing devraient fonctionner avec un minimum de connaissances a priori et détecter rapidement les utilisateurs primaires. Nous avons donc développé de tels algorithmes utilisant des résultats récents sur la théorie des matrices aléatoires, qui sont capables de fournir de bonnes performances, avec un petit nombre d'échantillons. Ensuite, nous avons proposé une méthode de conception de la forme d'onde UWB, vue comme une superposition de fonctions B-splines, dont les coefficients de pondération sont optimisés par des algorithmes génétiques. Il en résulte une forme d'onde UWB qui est spectralement efficace et peut s'adapter pour intégrer les contraintes liées à la radio cognitive. Dans la 2ème partie de cette thèse, nous nous sommes attaqués à deux autres problématiques importantes pour le fonctionnement des systèmes UWB, à savoir la synchronisation et l'estimation du canal UWB, qui est très dense en trajets multiples. Ainsi, nous avons proposé plusieurs algorithmes de synchronisation, de faible complexité et sans séquence d'apprentissage, pour les modulations BPSK et PSM, en exploitant l'orthogonalité des formes d'onde UWB ou la cyclostationnarité inhérente à la signalisation IR-UWB. Enfin, nous avons travaillé sur l'estimation du canal UWB, qui est un élément critique pour les récepteurs Rake cohérents. Ainsi, nous avons proposé une méthode d'estimation du canal basée sur une combinaison de deux approches complémentaires, le maximum de vraisemblance et la décomposition en sous-espaces orthogonaux,d'améliorer globalement les performances.
|
67 |
Synchronization in emerging wireless communication systemsYao, Yuzhe 08 August 2012 (has links)
Synchronization is one of the most important issues in wireless communication systems design and implementation. The requirement for synchronization is going high as the signal bandwidth and the system complexity increases. For instance, the ultra-short pulse width in ultra-wideband (UWB) communication systems poses problems to the conventional timing synchronization methods and the multi-node transmission poses problems to the existing carrier frequency offset (CFO) synchronization methods. Moreover, the impact of imperfect synchronization in these systems on the system performance is more negative than that of the conventional communication systems. Therefore, efficient synchronization algorithms are really in need. This dissertation presents several synchronization methods aiming to either improve the synchronization performance or reduce the synchronization complexity. The focus of this dissertation is on UWB systems and cooperative systems. Both timing synchronization and carrier frequency synchronization problems have been investigated. Several different systems are considered, including the point to point block transmission based UWB communications, orthogonal frequency division multiplexing (OFDM) based one way and two way relaying communication systems and narrow band cooperative communication systems. For block transmission UWB systems, i.e., both OFDM and single carrier frequency domain equalization (SC-FDE) UWB systems, a new generic timing estimation method based on channel impulse response (CIR) estimation is proposed. The newly proposed method is superior to the existing methods not only in synchronization performance, but also in the algorithm complexity. For the multi-node cooperative communications, the CFO mitigation issue is studied with OFDM signaling. Due to the distributed nature of the cooperative system, the multiple CFO problem is inevitable and hard to solve. A two-step compensation scheme is designed to suppress the interference introduced by multiple CFO with low complexity. Moreover, timing synchronization in cooperative communications is studied, including the broadband OFDM based cooperative communication and the narrow band cooperative communication. A means of determining the optimal timing of the OFDM signal in asynchronous two way relay networks (TWRN) has been designed. A correlation based multi-delay estimation method is proposed for narrow band asynchronous cooperative communication systems. The synchronization issues covering both timing and carrier synchronization have been extensively studied in this dissertation. New synchronization methods have been proposed for the emerging transmission schemes such as high rate UWB transmission and the distributed cooperative transmission with challenges different from conventional wireless transmission schemes. / Graduate
|
68 |
Ultra wideband channel measurements in an indoor office environment with horizontal and vertical polarizationsShields, John A. 15 January 2013 (has links)
Ultra wideband (UWB) has the potential for high data rates, ranging and positioning.
A UWB communication system's design requires knowledge regarding the channel. This
thesis investigates the effect that different antenna orientations have on the wireless
channel; in an indoor office environment. Channel reciprocity, path loss, body shadowing
and spatial correlation are investigated for the frequency band 3.1 to 10.6 GHz. The
measurements are performed in the frequency domain. UWB channels are shown to be
highly reciprocal in all instances. Path loss versus distance was determined for line of
sight (LOS) and non-line of sight (NLOS) scenarios. Body shadowing is measured for an
average Caucasian male, and the root mean square (RMS) delay spread and received
power loss plotted spatially. The spatial correlation is investigated using a two
dimensional grid. A comparison between the horizontal and vertical polarization is
made. / Graduate
|
69 |
Modélisation et conception d’un récepteur non cohérent ultra large bande pour les communications ULB radio impulsionnelle dans la bande 3-5 GHz / Modeling and design of non coherent ultra wide band receiver for UWB impulse radio communication in the band 3-5 GHzRamos Sparrow, Oswaldo 17 November 2014 (has links)
Ce travail de recherche est basé sur la technologie Ultra Large Bande (ULB), en particulier pour des applications bas débit (standard IEEE 802.15.4) tels que les réseaux de capteurs, les transmissions WPAN ou encore WBAN. La modélisation et la conception d’un récepteur non cohérent ULB pour les communications radio impulsionnelles ont été réalisées. Un des facteurs les plus importants dans les communications ULB est la sensibilité du récepteur, qui détermine la portée de transmission maximale. Un autre facteur aussi important est la consommation d’énergie qui influence directement la durée de vie de la source d’alimentation (batterie). Dans ce contexte, nous présentons dans le chapitre I une introduction sur la technologie ULB et ses diverses applications. Le chapitre II présente la modélisation au niveau système ainsi que d’une étude comparative des récepteurs non cohérents basés sur la détection d’énergie et la pseudo-Détection d’énergie. Dans le chapitre III sont présentés la méthode de conception et de réalisation d’un récepteur non cohérent ULB dans la bande de 3-5 GHz, ainsi que les résultats de mesure et ses performances en termes de sensibilité et de consommation d’énergie. Finalement, le chapitre IV présente une étude théorique sur les différents modes de fonctionnement du transistor MOS afin de mieux comprendre le fonctionnement de chaque bloc du récepteur. Cela permet de proposer de nouvelles architectures pour la détection d’énergie. Enfin, à partir de ces études nous réalisons l’optimisation du récepteur en termes de sensibilité et de consommation d’énergie. / This research is based on Ultra Wide Band (UWB) technology, in particularly for low-Rate applications such as sensor network, WPAN and WBAN (for the standard IEEE 802.15.4). The model and design of a non coherent receiver for UWB impulse radio communications has been completed. One of the most important factors in the UWB communications is the receiver sensitivity which determines the maximum transmission range. Another important factor is the energy consumption that determines the lifetime of the power source (battery). In this context, we present in Chapter I an introduction to UWB technology and its different applications. Chapter II deals with a modeling at the system level of non-Coherent receivers as well as a comparative study based on the energy detection and pseudo energy detection. In Chapter III is presented the method of design and implementation of a non-Coherent UWB receiver in the band of 3-5 GHz, as well as measurement results and performance in terms of sensitivity and power consumption. Finally, Chapter IV presents a theoretical study on the different modes of operation of the MOS transistor to understand the operation of each block of the receiver. This allows us to show the new architectures for energy detection and perform the optimization of receiver in terms of sensitivity and power consumption.
|
70 |
Design and Implementation of Broad Band and Narrow Band Antennas and Their ApplicationsSalmani, Zeeshan 08 1900 (has links)
The thesis deals with the design and implementation of broadband and narrowband antennas and their applications in practical environment. In this thesis, a new concept for designing the UWB antenna is proposed based on the CRLH metamaterials and this UWB antenna covers a frequency range from 2.45 GHz to 11.6 GHz. Based on the design of the UWB antenna, another antenna is developed that can cover a very wide bandwidth i.e from 0.66 GHz to 120 GHz. This antenna can not only be used for UWB applications but also for other communication systems working below the UWB spectrum such as GSM, GPS, PCS and Bluetooth. The proposed antenna covering the bandwidth from 0.66 GHz to 120 GHz is by far the largest bandwidth antenna developed based on metamaterials. Wide band antennas are not preferred for sensing purpose as it is difficult to differentiate the received signals. A multiband antenna which can be used as a strain sensor for structural health monitoring is proposed. The idea is to correlate the strain applied along the length or width with the multiple resonant frequencies. This gives the advantage of detecting the strain applied along any direction (either length or width), thus increasing the sensing accuracy. Design and application of a narrow-band antenna as a temperature sensor is also presented. This sensor can be used to detect very high temperature changes (>10000C). This sensor does not require a battery, can be probed wirelessly, simple and can be easily fabricated, can withstand harsh environmental conditions.
|
Page generated in 0.0376 seconds