• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Planejamento de sistemas de transmissão em área com fonte de geração intermitente, apoiado no uso de tecnologias avançadas. / Planning of transmission systems in an area with an intermittent generation source, based on the use of advanced technologies.

Silveira, Patrícia Oliveira da 02 May 2017 (has links)
O Brasil é um país de dimensões continentais, onde existe uma considerável distância entre a geração e os principais centros de consumo. Dessa forma, o estudo e desenvolvimento de novas tecnologias de transmissão a longas distâncias é de fundamental importância para o desenvolvimento do país. A solução mais utilizada atualmente é a transmissão em corrente alternada. Entretanto a transmissão em corrente continua também é uma solução viável para longas distâncias. O sistema brasileiro é composto principalmente por linhas 500 kV em corrente alternada (também há 230; 345; 440 e 750 kV), bem como em corrente continua (em ±600 e ±800 kV). O presente estudo apresenta uma solução de transmissão em corrente alternada por linhas de 1000 kV, que se mostrou mais econômico na transmissão de potências superiores a 3.500 MW e distâncias de 1400km. Nos próximos anos, a geração de energia elétrica no Brasil será expandida de forma significativa, ocorrerá um aumento principalmente na geração de energia eólica e solar, localizadas em sua maioria na região Nordeste do país. Esse aumento na geração exigirá a transmissão de grandes blocos de energia elétrica por distâncias significativas, devido à falta de proximidade entre a geração e os principais centros consumidores, que estão localizados no Sudeste. Neste estudo, serão mostradas as etapas de definição de condutor economicamente mais adequado e projeto da geometria da torre. Com base nos dados obtidos, será feita a avaliação do desempenho da linha 1000 kV, durante a operação normal de fluxo de carga, curtos-circuitos e estabilidade. / Brazil, a country of continental proportions, have significant distance between the power generation centers and the main consumer centers. In such way, the study and development of new transmission technologies over long distances is of fundamental importance for the development of the country. Nowadays, the most commonly used solution is alternating current transmission. However, direct current transmission is also a viable solution for long distances. The Brazilian system mainly consists of 500 kV alternating current lines (along with 230, 345, 440 and 750 kV) and direct current lines (± 600 and ± 800 kV). This study provides a solution for transmission in alternating current by lines of 1000 kV, which proved to be more economical in power transmission over 3,500 MW and distances beyond 1400km. In the coming years, the electric power generation in Brazil will expand significantly; a boost will take place mainly in wind and solar power generation, located mostly in the Northeast of the country. This generation expansion will require transmission of large blocks of electric power over considerable distances, due to the lack of proximity between generation sites and main consumer centers located in the Southeast. This study will show the setting stages of the most economically applicable conductor and tower geometry design. Based on the data obtained, the performance of the 1000 kV line will be evaluated during the regular load flow operation, short circuits and stability.
2

Planejamento de sistemas de transmissão em área com fonte de geração intermitente, apoiado no uso de tecnologias avançadas. / Planning of transmission systems in an area with an intermittent generation source, based on the use of advanced technologies.

Patrícia Oliveira da Silveira 02 May 2017 (has links)
O Brasil é um país de dimensões continentais, onde existe uma considerável distância entre a geração e os principais centros de consumo. Dessa forma, o estudo e desenvolvimento de novas tecnologias de transmissão a longas distâncias é de fundamental importância para o desenvolvimento do país. A solução mais utilizada atualmente é a transmissão em corrente alternada. Entretanto a transmissão em corrente continua também é uma solução viável para longas distâncias. O sistema brasileiro é composto principalmente por linhas 500 kV em corrente alternada (também há 230; 345; 440 e 750 kV), bem como em corrente continua (em ±600 e ±800 kV). O presente estudo apresenta uma solução de transmissão em corrente alternada por linhas de 1000 kV, que se mostrou mais econômico na transmissão de potências superiores a 3.500 MW e distâncias de 1400km. Nos próximos anos, a geração de energia elétrica no Brasil será expandida de forma significativa, ocorrerá um aumento principalmente na geração de energia eólica e solar, localizadas em sua maioria na região Nordeste do país. Esse aumento na geração exigirá a transmissão de grandes blocos de energia elétrica por distâncias significativas, devido à falta de proximidade entre a geração e os principais centros consumidores, que estão localizados no Sudeste. Neste estudo, serão mostradas as etapas de definição de condutor economicamente mais adequado e projeto da geometria da torre. Com base nos dados obtidos, será feita a avaliação do desempenho da linha 1000 kV, durante a operação normal de fluxo de carga, curtos-circuitos e estabilidade. / Brazil, a country of continental proportions, have significant distance between the power generation centers and the main consumer centers. In such way, the study and development of new transmission technologies over long distances is of fundamental importance for the development of the country. Nowadays, the most commonly used solution is alternating current transmission. However, direct current transmission is also a viable solution for long distances. The Brazilian system mainly consists of 500 kV alternating current lines (along with 230, 345, 440 and 750 kV) and direct current lines (± 600 and ± 800 kV). This study provides a solution for transmission in alternating current by lines of 1000 kV, which proved to be more economical in power transmission over 3,500 MW and distances beyond 1400km. In the coming years, the electric power generation in Brazil will expand significantly; a boost will take place mainly in wind and solar power generation, located mostly in the Northeast of the country. This generation expansion will require transmission of large blocks of electric power over considerable distances, due to the lack of proximity between generation sites and main consumer centers located in the Southeast. This study will show the setting stages of the most economically applicable conductor and tower geometry design. Based on the data obtained, the performance of the 1000 kV line will be evaluated during the regular load flow operation, short circuits and stability.
3

Lightning Shielding Failure Analysis of Ultra High Voltage Power Transmission Lines

Devadiga, Anurag A January 2015 (has links) (PDF)
In India, the natural energy resources (thermal and hydro) are unevenly distributed and are mostly present in the remote areas and the load centers are distributed across various regions of the country. Therefore high voltage lines have become necessary for the devel-opment of large interconnected power networks and for the reliable and economic transfer of power. The increase in electric power demand due to the electric load growth has lead to the expansion of the transmission systems to ultra high voltage levels. Presently, Ultra High Voltage (UHV) power transmission lines are being built to transfer large electric power to distant load centers from the generating stations. Increasing the line voltage increases the surge impedance loading, stability and the thermal capacity of the line. Lightning is one of the major causes for the line outages and interruptions of UHV power lines. A lightning strike generates a very large voltage leading to insulator puncture, melting, burning and pitting of conductors and the supporting hardware. Lightning can lead to transient over-voltages thus leading to ash-over in the power transmission lines which are dangerous for the power equipments as well as for the human beings working in the vicinity. Ground wires are used for the protection of overhead power transmission lines against a lightning stroke. The overhead ground wires are installed such that the lightning attaches to it and shunts the lightning current to the ground through the tower, thus protecting the phase conductors. Shielding failure happens when the lightning strikes the phase conductor instead of the ground wires. Lightning shielding failure is a major con-cern in UHV lines due to their large height, very high operating voltage and wide exposure area of the phase conductors. The lightning over-voltages injected on the phase conductor (shielding failure) nally reaches the substation causing serious threat to the substation components and can lead to temporary or permanent outage of the power transmission system. There have been cases of very high shielding failure ash-overs of UHV lines and thus lightning attachment to power transmission lines need to be studied in detail to reduce the power system line outages. Several models such as electro-geometric model (EGM) and leader progression model (LPM) have been developed to study the shielding failure of power transmission lines. EGM has been extensively used to obtain lightning attachment to power transmission lines but in recent years it is seen that EGM is unable to accurately predict the lightning attach-ment to UHVAC lines. The shielding failure rates obtained by EGM does not match with the observed shielding failure rate for UHV lines. For this reason LPM is considered to obtain lightning attachment to UHV lines but LPM in its initial stage do not deal with the detailed physics of the upward leader inception, i.e., corona inception and unstable as well as stable upward leader inception from the object on the ground. In this thesis a model for the lightning attachment has been developed based on the present knowledge of the lightning physics. The thesis mainly focuses on the modelling of upward leader inception and propagation for lightning attachment to UHV power trans-mission lines. Upward leader inception is modeled based on the corona charge present near the conductor region and the upward leader propagation model is based on the correlation between the lightning induced voltage on the conductor and the voltage drop along the upward leader channel. The present model considers corona inception and modelling of unstable and stable upward leader inception from the ground object for the analysis of the lightning attachment process. The upward leader inception model developed is compared with the previous inception models and the results obtained using the present and previous models are found to be comparable. Lightning striking distances ( nal jump) for various lightning return stroke current were computed for di erent conductor heights using present lightning attachment model. It is seen that the striking distance increases with the increase in lightning re-turn stroke current and increases with increase in conductor heights. The striking distance computed using the present model matches with the value calculated using the equation proposed by the IEEE working group for the applicable conductor heights of up to 8 m. The in uence of the conductor operating voltage, cloud electric eld, lightning down-ward leader lateral distance, conductor length, transmission line tower and conductor sag on the upward lightning leader inception are analysed and reported in the thesis. It is found that the lightning attraction to power transmission line increases with increase in conductor positive operating voltage and decreases with increase in conductor negative op-erating voltage. The presence of transmission line tower reduces the lightning attachment to the conductor lines and the probability of lightning strike decreases with the increase in downward leader lateral distance from the conductor lines. The present lightning attachment model is applied to study the shielding failure of UHV power transmission lines rated for 1200 kV ac (delta and horizontal con guration) and for 800 kV dc (with and without a dedicated metallic return conductor) and thereby the lightning shielding failure ash-over rate is computed for the UHV power transmission lines. It is seen that the lightning shielding rate for UHV power transmission lines depend on the lateral distance of the downward leader channel, instantaneous 50 Hz voltage on the transmission line conductor, height of the transmission line conductor, induced voltages on the conductor and the lightning return stroke current.
4

Design Optimization and Realization of 4H-SiC Bipolar Junction Transistors

Elahipanah, Hossein January 2017 (has links)
4H-SiC-based bipolar junction transistors (BJTs) are attractive devices for high-voltage and high-temperature operations due to their high current capability, low specific on-resistance, and process simplicity. To extend the potential of SiC BJTs to power electronic industrial applications, it is essential to realize high-efficient devices with high-current and low-loss by a reliable and wafer-scale fabrication process. In this thesis, we focus on the improvement of the 4H-SiC BJT performance, including the device optimization and process development. To optimize the 4H-SiC BJT design, a comprehensive study in terms of cell geometries, device scaling, and device layout is performed. The hexagon-cell geometry shows 42% higher current density and 21% lower specific on-resistance at a given maximum current gain compared to the interdigitated finger design. Also, a layout design, called intertwined, is used for 100% usage of the conducting area. A higher current is achieved by saving the inactive portion of the conducting area. Different multi-step etched edge termination techniques with an efficiency of &gt;92% are realized. Regarding the process development, an improved surface passivation is used to reduce the surface recombination and improve the maximum current gain of 4H-SiC BJTs. Moreover, wafer-scale lift-off-free processes for the n- and p-Ohmic contact technologies to 4H-SiC are successfully developed. Both Ohmic metal technologies are based on a self-aligned Ni-silicide (Ni-SALICIDE) process. Regarding the device characterization, a maximum current gain of 40, a specific on-resistance of 20 mΩ·cm2, and a maximum breakdown voltage of 5.85 kV for the 4H-SiC BJTs are measured. By employing the enhanced surface passivation, a maximum current gain of 139 and a specific on-resistance of 579 mΩ·cm2 at the current density of 89 A/cm2 for the 15-kV class BJTs are obtained. Moreover, low-voltage 4H-SiC lateral BJTs and Darlington pair with output current of 1−15 A for high-temperature operations up to 500 °C were fabricated. This thesis focuses on the improvement of the 4H-SiC BJT performance in terms of the device optimization and process development for high-voltage and high-temperature applications. The epilayer design and the device structure and topology are optimized to realize high-efficient BJTs. Also, wafer-scale fabrication process steps are developed to enable realization of high-current devices for the real applications. / <p>QC 20170810</p>
5

Dimensioning Of Corona Control Rings For EHV/UHV Line Hardware And Substations

Chatterjee, Sreenita 10 1900 (has links) (PDF)
High voltage (EHV and UHV) transmission facilitates transfer of large amount of power over long distances. However, due to the inherent geometry, the line and substation hardware of EHV and UHV class generate high electric fields, which results in local ionisation of air called corona discharges. Apart from producing audible noise in the form of frying or hissing sound, corona produces significant electromagnetic interferences in the radio range. The limit for this corona generated Radio Interference (RI) has been stipulated by international standards, which are strictly to be followed. In line and substation hardware, corona control rings are generally employed to limit or avoid corona. Standard dimensions of corona rings are not available for EHV and UHV class. In most of the cases, their design is based on either a trial and error method or based on empirical extrapolation. Only in certain specific cases, the dimensioning of the rings is carried out using electric field calculations. In any of these approaches, the unavoidable surface abrasions, which can lead to corona, are not considered. There are also efforts to account for nominal surface irregularity by using a surface roughness factor, which is highly heuristic. In order to address this practically relevant problem, the present work was taken up. The intended exercise requires accurate field computation and a suitable criterion for checking corona onset. For the first part, the Surface Charge Simulation Method is adopted with newly proposed sub-modelling technique. The surface of the toroid is discretised into curvilinear patches with linear approximation for the surface charge density. Owing to its high accuracy, Galerkin’s method of moments formulation is employed. The problem of singularity encountered in the numerical approach is handled using a method based on Duffy’s transformation. The developed codes have also been validated with standard geometries. After a survey of relevant literature the ‘Critical Avalanche Criteria’ is chosen for its simplicity and applicability to the problem. Through a detailed simulation, the effect of avalanche space charge in reducing the corona onset voltage is found to be around 1.5% and hence it is not considered further. For utilities not interested in a detailed calculation procedure for dimensioning of corona rings, design curves are developed for circular corona rings of both 400 kV and 765 kV class with surface roughness factor in the range 0.8 – 1. In the second part of the work, a methodology for dimensioning is developed wherein the inevitable surface abrasion in the form of minute protrusions can be accounted. It is first shown that even though considerable field intensification occurs at the protrusions, such localised modification need not lead to corona. It is shown that by varying the minor radius of the corona ring, it is possible to get a design where the prescribed surface abrasion does not lead to corona onset. In summary, the present work has successfully developed a reliable methodology for the design of corona rings with prescribed surface abrasions. It involved development of an efficient field computation technique for handling minute surface protrusions and use of appropriate criteria for assessing corona inception. It has also provided design curves for EHV and UHV class corona rings with surface roughness factor specified in the range 0.8 – 1.0.
6

Transient Analysis of EHV/UHV Transmission Systems for Improved Protection Schemes

Ravishankar, Kurre January 2012 (has links) (PDF)
Ever increasing demand for electricity, exploitation of large hydro and nuclear power at remote location has led to power evacuation by long EHV/UHV transmission systems. This thesis concentrates on transient analysis of EHV/UHV transmission systems for improved planning and protection. In this thesis, the uncontrolled and controlled switching methods to limit the switching surges during energization of 765kV and 1200k VUHV transmission lines are studied. The switching surge over voltages during the energization of series compensated line are compared with uncompensated line. A Generalized Electromagnetic Transients Program has been developed. The program incorporates specific models for studying the effectiveness of various means for control of switching surge over voltages during UHV transmission line energization and also simulation of various types of faults. Since power grids may adopt next higher UHV transmission level 1200kV, these studies are necessary for insulation coordination as well as transmission line protection relay settings. A new fault detection/location technique is presented for transmission line using synchronized fundamental voltage and current phasors obtained by PMUs at both ends of line. It is adaptive to fault resistance, source impedance variation, line loading and fault incidence angle. An improved Discrete Fourier Transform (DFT) algorithm to estimate and eliminate the decaying dc component in a fault current signal is proposed for computing the phasors. The settings for digital distance relays under different operating conditions are obtained. The relay should operate faster and be more sensitive to various faults under different conditions without loosing selectivity. An accurate faulted transmission line model which considers distributed shunt capacitance has been presented. The relay trip boundaries are obtained considering transmission line model under realistic fault conditions. For different loading conditions ideal relay characteristic has been developed. The obtained trip boundaries can be used for proper settings of practical relay. An adaptive relaying scheme is proposed for EHV/UHV transmission line using unsynchronized/synchronized fundamental voltage and current phasors at both ends of line. For fault location, the redundancy in equations is achieved by using two kinds of Clarke’s components which makes the calculations non-iterative and accurate. An operator for synchronization of the unsynchronized measurements is obtained by considering the distributed parameter line model. The distance to fault is calculated as per the synchronized measurements. Support Vector Machine(SVM) is used for high speed protection of UHV line. The proposed relaying scheme detects the fault and faulted phase effectively within few milli seconds. The current and voltage signals of all phases at the substation are fed to SVM directly at a sampling frequency of 1.0kHZi.e20 samples/cycle . It is possible to detect faulted phase with in 3msec, using the data window of 1/4th cycle. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the developed EMTP.
7

Eco-conception des systèmes de transmission de l'énergie électrique / Eco-design of power transmissions systems

Wang, Wenlu 12 July 2011 (has links)
Les demandes pour la préservation de l'environnement ainsi que les préoccupations pour un développement durable, ont augmenté considérablement ces dernières décennies à travers le monde. Ce souci environnemental est également présent dans l'industrie électrique et les approches d’éco-conception sont de plus en plus présentes dans la conception et la réalisation des composants et systèmes de transmission et de distribution (T & D) de l’énergie électrique. Cette étude est menée, dans le but d'analyser les impacts des systèmes de transmission de l’énergie électrique sur l’environnement, de localiser les principales sources de pollution environnementale. Les impacts environnementaux d'un cas réel du système de transmission à 765 kV AC du Venezuela sont étudies, à l'aide de l'Analyse du Cycle de Vie (ACV). Les principales sources de pollution de l'environnement du système de transmission sont localisées, qui sont les pertes d'énergie dans les lignes de transmission et les transformateurs de puissance ainsi que les émissions de SF6 des disjoncteurs. En outre, l’analyse des impacts environnementaux de l'Ultra Haute Tension (UHV) et Très Haute Tension (THT) de lignes de transmission est menée, concernant l'efficacité énergétique d'une série de lignes de transmission (500 kV AC, 765 kV AC, 1200 kV AC, ± 500 kV DC et ± 800 kV DC) et les émissions de CO2-équivalent en raison des pertes d'énergie dans les lignes de transmission ; et l’ACV d'une ligne de transmission à 1000 kV AC nouvellement construite en Chine. / The demand to preserve the environment and form a sustainable development is greatly increasing in the recent decades all over the world, and this environmental concern is also merged in electrical power industry, resulting in many eco-design approaches in Transmission & Distribution (T & D) industries. As a method of eco-design, Life Cycle Assessment (LCA) is a systematic tool that enables the assessment of the environmental impacts of a product or service throughout its entire life cycle, i.e. raw material production, manufacture, distribution, use and disposal including all intervening transportation steps necessary or caused by the product's existence. In T & D industries, LCA has been done for a lot of products individually, in order to see one product’s environmental impacts and to seek for ways of improving its environmental performance. This eco-design for product approach is a rather well-developed trend, however, as only a single electrical product cannot provide the electrical power to users, electrical system consists of a huge number of components, in order to investigate system’s environmental profile, the entire environmental profiles of different composing products has to be integrated systematically, that is to say, a system approach is needed. Under this philosophy, the study “Eco-design of Power Transmission Systems” is conducted in this thesis, with the purpose of analysing the transmission systems’environmental impacts, locating the major environmental burden sources of transmission systems, selecting and/or developing methodologies of reducing its environmental impacts.

Page generated in 0.0914 seconds