Spelling suggestions: "subject:"ultrasonic spray pyrolysis"" "subject:"vltrasonic spray pyrolysis""
1 |
Síntese de aluminato de magnésio por meio da técnica de pirólise de spray gerado por pulverização ultrassônica. / Synthesis of magnesium aluminate by ultrasonic spray pyrolysis.Camargo, Marco Túlio Terrell de 22 May 2017 (has links)
O aluminato de magnésio (MgAl2O4; espinélio) apresenta propriedades mecânicas superiores quando comparado aos materiais cerâmicos tradicionais, tais como elevados módulo elástico (273 GPa) e resistência à flexão (110 MPa), associadas à baixa densidade (3,58 g/cm3), baixo índice de reflexão (1,736), índice de transmissão óptica elevado no espectro visível e espectros no infravermelho com comprimentos de onda médios (0,2 - 5,5 µm), além da ausência de anisotropia óptica, devido à sua estrutura cúbica. No entanto, MgAl2O4 é utilizado principalmente como material refratário, apesar de possuir grande potencial em aplicações que exijam blindagem transparente leve. Nanopartículas de espinélio já foram preparadas anteriormente por diferentes métodos. Contudo, o domínio de um processo industrial contínuo, escalonável e versátil para a preparação de MgAl2O4 dopado ainda permanece como um desafio para expandir as aplicações deste material. Dentre as vias de síntese habituais utilizadas para produzir nano-óxidos, a Pirólise de Spray gerado por Pulverização Ultrassônica (PSPU) tem sido utilizada com sucesso para sintetizar nanopartículas esféricas, nanofios, nanofitas e nanovaretas. Neste contexto, o presente trabalho confirma o potencial da PSPU para produzir espinélio dopado em um processo contínuo. A influência dos parâmetros envolvidos na síntese do aluminato de magnésio por meio desta técnica, assim como o efeito da presença do cálcio e do fluoreto de lítio sobre a morfologia e a estrutura das partículas, foram investigadas por fluorescência de raios X, difração de raios X, espectroscopia no infravermelho, granulometria por difração laser, microscopia eletrônica de varredura e adsorção de N2. Finalmente, as propriedades mecânicas do produto final sinterizado foram avaliadas visando estabelecer uma correlação com as condições de síntese. O processo de síntese de aluminato de magnésio por meio do sistema de PSPU desenvolvido nas dependências do Departamento de Engenharia Metalúrgica e de Materiais da Escola Politécnica da Universidade de São Paulo demostrou-se eficaz para a produção de amostras de aluminato de magnésio puro após a etapa de sinterização, desde que respeitada a estequiometria do composto após a etapa de síntese. Por meio desta técnica, esferas micrométricas de MgAl2O4 dopadas com Ca(NO3)2 e LiF, apresentando tamanhos médios de cristalito na faixa de 3,5 - 7,0 nm e áreas de superfície específicas de 20 a 40 m2/g, foram produzidas como aglomerados esféricos de aproximadamente 2,5 µm. Durante o processo, as partículas permaneceram a temperaturas elevadas durante um curto período de tempo (de 35 a 70 segundos), permitindo a estabilidade de fases e aumento do tamanho de grãos limitado. Destaca-se ainda que as condições de síntese e/ ou incorporação de aditivos devem ser ajustados para a obtenção de amostras com maior área de superfície específica após a PSPU, o que acarretará em um produto final sinterizado com maior teor de densificação e dureza. Dessa forma, os melhores resultados foram obtidos a maiores temperaturas de pirólise e com incorporação do aditivo LiF, demonstrado a necessidade de futuros estudos mais aprofundados a respeito dos limites máximos destas variáveis para a obtenção de um produto final otimizado. Finalmente, as propriedades balísticas das amostras também foram analisadas através da aplicação de fórmulas empíricas para avaliação da fragilidade (B) e da habilidade do material dissipar energia balística (critério D), onde se observou que as amostras sintetizadas sem aditivos apresentaram boa concordância em relação aos valores reportados na literatura para a alumina. A amostra aditivada com LiF, no entanto, apresentou um incremento no critério D de cerca de 43% em relação à alumina com 99,7% de pureza, evidenciando o efeito deste aditivo nas propriedades balísticas do aluminato de magnésio produzido pela PSPU. / Magnesium aluminate (MgAl2O4; spinel) possesses superior mechanical properties when compared to traditional ceramic materials, such as high elastic modulus (273 GPa) and flexural strength (110 MPa), associated with low density (3.58 g/cm3), low reflection index (1.736), high optical transmission in visible and mid-wavelength infrared spectra (0.2 - 5.5 µm), and no optical anisotropy due to its cubic structure. However, MgAl2O4 is primarily used as a refractory material, despite its great potential as a transparent lightweight armor. Spinel nanoparticles have been previously prepared by different methods. Nevertheless, a continuous, scalable, and versatile process for the preparation of doped MgAl2O4 still remains a challenge for expanding applications. Among the usual synthesis routes used to produce nano-oxides, Ultrasonic Spray Pyrolysis (USP) has been successfully employed to synthesize nanoparticles as spheres, nanowires, nanoribbons and nanorods. In this context, the present work confirms the potential of USP to produce doped spinel in a continuous setup. The influence of the parameters involved in the synthesis of magnesium aluminate through this technique, as well as the effect of the presence of calcium and lithium fluoride on the morphology and structure of the particles, were investigated by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, laser diffraction for particle size analysis, scanning electron microscopy and N2 adsorption. Finally, the mechanical properties of the sintered product were evaluated in order to establish a correlation with the synthesis conditions. The magnesium aluminate synthesis process through the USP system developed at the Department of Metallurgical and Materials Engineering of the Polytechnic School of the University of São Paulo was effective for the production of pure magnesium aluminate samples after the sintering stage, if the stoichiometry of the compound after the synthesis step is observed. Through this technique, micrometric spheres of Ca(NO3)2 and LiF doped MgAl2O4 with crystallite size in the range from 3.5 - 7.0 nm and specific surface areas varying from 20 to 40 m2/g, were produced as spherical agglomerates of approximately 2.5 µm. During the process, the particles stay at high temperatures for a short period (from 35 to 70 seconds), allowing phase stability and limited coarsening. It should also be noted that the synthesis conditions and / or the incorporation of additives must be adjusted in order to obtain samples with greater specific surface area after the USP, which will result in a sintered final product with a higher densification and hardness. Therefore, the best results were obtained at higher pyrolysis temperatures and with the incorporation of LiF additive, demonstrating the need for further studies on the maximum limits of these variables to obtain an optimized final product. Finally, the ballistic properties of the samples were also analyzed by the application of empirical formulas to evaluate the brittleness (B) and the ability of the material to dissipate ballistic energy (criterion D), where it was observed that the samples synthesized without additives showed good agreement with the values reported in the literature for alumina. The sample containing LiF additive, however, showed an increase in the D criterion of about 43% in relation to alumina with 99.7% purity, evidencing the effect of this additive on the ballistic properties of magnesium aluminate produced by USP.
|
2 |
A study of electrochemical properties of Ni-CGO composite for SOFC anodeChen, Jing-Chiang 29 June 2006 (has links)
For the past few decades, Ni-YSZ (yttria-stabilized zirconia) has been the dominate anode material of high temperature (>1000¢J) solid oxide fuel cells (SOFCs). However, the conductivity of Ni/YSZ is not enough when the operation temperature is in the intermediate rage of 500~700¢J. Instead, Ni/CGO is a good candidate as the anode material of intermediate temperature SOFCs (IT-SOFC), due to its enhanced conductivity.
This work was aimed at the preparation of Ni/CGO composite anodes using the electrostatic assisted ultrasonic spray pyrolysis (EAUSP) method. By properly adjusting the deposition parameters, highly porous composite films with desired phases and microstructure rendering low electrode impedances were obtained. The results indicated that deposition temperature and the applied voltage dictated the evolution of film morphology and hence the interface impedance between the electrode and the electrolyte.
Therefore, the optimum deposition parameters for the best microstructure and hence minimum interface impedance were 12 kV for the applied voltage, 6 : 4 for the Ni-CGO mole ratio, 450¢J for the deposition temperature. The microstructure thus obtained possessed a cauliflower-like structure with high porosity. The resultant interface impedance at 550¢J was 0.09 Ωcm2, lower than that obtained from the conventional anode preparation routes of dip-casting (0.14 Ωcm2) or mechanical mixing (0.12 Ωcm2).
|
3 |
Síntese de aluminato de magnésio por meio da técnica de pirólise de spray gerado por pulverização ultrassônica. / Synthesis of magnesium aluminate by ultrasonic spray pyrolysis.Marco Túlio Terrell de Camargo 22 May 2017 (has links)
O aluminato de magnésio (MgAl2O4; espinélio) apresenta propriedades mecânicas superiores quando comparado aos materiais cerâmicos tradicionais, tais como elevados módulo elástico (273 GPa) e resistência à flexão (110 MPa), associadas à baixa densidade (3,58 g/cm3), baixo índice de reflexão (1,736), índice de transmissão óptica elevado no espectro visível e espectros no infravermelho com comprimentos de onda médios (0,2 - 5,5 µm), além da ausência de anisotropia óptica, devido à sua estrutura cúbica. No entanto, MgAl2O4 é utilizado principalmente como material refratário, apesar de possuir grande potencial em aplicações que exijam blindagem transparente leve. Nanopartículas de espinélio já foram preparadas anteriormente por diferentes métodos. Contudo, o domínio de um processo industrial contínuo, escalonável e versátil para a preparação de MgAl2O4 dopado ainda permanece como um desafio para expandir as aplicações deste material. Dentre as vias de síntese habituais utilizadas para produzir nano-óxidos, a Pirólise de Spray gerado por Pulverização Ultrassônica (PSPU) tem sido utilizada com sucesso para sintetizar nanopartículas esféricas, nanofios, nanofitas e nanovaretas. Neste contexto, o presente trabalho confirma o potencial da PSPU para produzir espinélio dopado em um processo contínuo. A influência dos parâmetros envolvidos na síntese do aluminato de magnésio por meio desta técnica, assim como o efeito da presença do cálcio e do fluoreto de lítio sobre a morfologia e a estrutura das partículas, foram investigadas por fluorescência de raios X, difração de raios X, espectroscopia no infravermelho, granulometria por difração laser, microscopia eletrônica de varredura e adsorção de N2. Finalmente, as propriedades mecânicas do produto final sinterizado foram avaliadas visando estabelecer uma correlação com as condições de síntese. O processo de síntese de aluminato de magnésio por meio do sistema de PSPU desenvolvido nas dependências do Departamento de Engenharia Metalúrgica e de Materiais da Escola Politécnica da Universidade de São Paulo demostrou-se eficaz para a produção de amostras de aluminato de magnésio puro após a etapa de sinterização, desde que respeitada a estequiometria do composto após a etapa de síntese. Por meio desta técnica, esferas micrométricas de MgAl2O4 dopadas com Ca(NO3)2 e LiF, apresentando tamanhos médios de cristalito na faixa de 3,5 - 7,0 nm e áreas de superfície específicas de 20 a 40 m2/g, foram produzidas como aglomerados esféricos de aproximadamente 2,5 µm. Durante o processo, as partículas permaneceram a temperaturas elevadas durante um curto período de tempo (de 35 a 70 segundos), permitindo a estabilidade de fases e aumento do tamanho de grãos limitado. Destaca-se ainda que as condições de síntese e/ ou incorporação de aditivos devem ser ajustados para a obtenção de amostras com maior área de superfície específica após a PSPU, o que acarretará em um produto final sinterizado com maior teor de densificação e dureza. Dessa forma, os melhores resultados foram obtidos a maiores temperaturas de pirólise e com incorporação do aditivo LiF, demonstrado a necessidade de futuros estudos mais aprofundados a respeito dos limites máximos destas variáveis para a obtenção de um produto final otimizado. Finalmente, as propriedades balísticas das amostras também foram analisadas através da aplicação de fórmulas empíricas para avaliação da fragilidade (B) e da habilidade do material dissipar energia balística (critério D), onde se observou que as amostras sintetizadas sem aditivos apresentaram boa concordância em relação aos valores reportados na literatura para a alumina. A amostra aditivada com LiF, no entanto, apresentou um incremento no critério D de cerca de 43% em relação à alumina com 99,7% de pureza, evidenciando o efeito deste aditivo nas propriedades balísticas do aluminato de magnésio produzido pela PSPU. / Magnesium aluminate (MgAl2O4; spinel) possesses superior mechanical properties when compared to traditional ceramic materials, such as high elastic modulus (273 GPa) and flexural strength (110 MPa), associated with low density (3.58 g/cm3), low reflection index (1.736), high optical transmission in visible and mid-wavelength infrared spectra (0.2 - 5.5 µm), and no optical anisotropy due to its cubic structure. However, MgAl2O4 is primarily used as a refractory material, despite its great potential as a transparent lightweight armor. Spinel nanoparticles have been previously prepared by different methods. Nevertheless, a continuous, scalable, and versatile process for the preparation of doped MgAl2O4 still remains a challenge for expanding applications. Among the usual synthesis routes used to produce nano-oxides, Ultrasonic Spray Pyrolysis (USP) has been successfully employed to synthesize nanoparticles as spheres, nanowires, nanoribbons and nanorods. In this context, the present work confirms the potential of USP to produce doped spinel in a continuous setup. The influence of the parameters involved in the synthesis of magnesium aluminate through this technique, as well as the effect of the presence of calcium and lithium fluoride on the morphology and structure of the particles, were investigated by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, laser diffraction for particle size analysis, scanning electron microscopy and N2 adsorption. Finally, the mechanical properties of the sintered product were evaluated in order to establish a correlation with the synthesis conditions. The magnesium aluminate synthesis process through the USP system developed at the Department of Metallurgical and Materials Engineering of the Polytechnic School of the University of São Paulo was effective for the production of pure magnesium aluminate samples after the sintering stage, if the stoichiometry of the compound after the synthesis step is observed. Through this technique, micrometric spheres of Ca(NO3)2 and LiF doped MgAl2O4 with crystallite size in the range from 3.5 - 7.0 nm and specific surface areas varying from 20 to 40 m2/g, were produced as spherical agglomerates of approximately 2.5 µm. During the process, the particles stay at high temperatures for a short period (from 35 to 70 seconds), allowing phase stability and limited coarsening. It should also be noted that the synthesis conditions and / or the incorporation of additives must be adjusted in order to obtain samples with greater specific surface area after the USP, which will result in a sintered final product with a higher densification and hardness. Therefore, the best results were obtained at higher pyrolysis temperatures and with the incorporation of LiF additive, demonstrating the need for further studies on the maximum limits of these variables to obtain an optimized final product. Finally, the ballistic properties of the samples were also analyzed by the application of empirical formulas to evaluate the brittleness (B) and the ability of the material to dissipate ballistic energy (criterion D), where it was observed that the samples synthesized without additives showed good agreement with the values reported in the literature for alumina. The sample containing LiF additive, however, showed an increase in the D criterion of about 43% in relation to alumina with 99.7% purity, evidencing the effect of this additive on the ballistic properties of magnesium aluminate produced by USP.
|
4 |
Development Of Cu2ZnSnS4/ZnS Thin Film Heterojunction Solar Cells By Ultrasonic Spray PyrolysisPrabhakar, Tejas 12 1900 (has links) (PDF)
Semiconductors such as CuInGaSe2 and CdTe have been investigated as absorber layer materials for thin film solar cells since their band gap matches with the solar spectrum. Films as thin as 2m are sufficient for the absorption of the visible part of solar radiation, because they are characterized by a high absorption coefficient. However, the scarcity and high costs of Indium, Gallium and Tellurium have led to concerns on the sustainability of these technologies. The semiconductor Cu2ZnSnS4 (Copper Zinc Tin Sulphide) consisting of abundantly available elements promises to be an excellent photovoltaic absorber material. The present study is focused on the growth and characterization of CZTS/ZnS thin film heterostructure suitable for PV applications. Ultrasonic Spray Pyrolysis (USP), a variation of Spray Pyrolysis is a thin film deposition technique where the solution to be sprayed is atomized by ultrasonic frequencies. The details of the USP experimental set up and the deposition principle are presented in the thesis. The active layers of the solar cell, viz. the CZTS absorber layer and ZnS emitter layer were grown by this technique. The metal top contact was deposited using e-beam evaporation. The effects of copper concentration and sodium diffusion on the Cu2ZnSnS4 film properties were investigated. The films have shown preferred orientation along (112) direction confirming kesterite structure. The optical studies revealed that a reduction of copper in the films will bring the band gap energy to 1.5eV, which will match with the solar spectrum. Sodium diffusion in the CZTS films is found to passivate the grain boundaries and enhance the electrical conductivity. These properties render CZTS films as good photovoltaic absorber layers. ZnS has a high band gap and is non toxic unlike CdS. The influences of variation in substrate temperature and spray duration on the ZnS film properties were examined. The optical studies conducted on ZnS films revealed that they are highly transparent in the visible region of the solar spectrum. The films were found to possess a band gap of 3.5 eV. These properties make them potential candidates as solar cell emitter layers. The CZTS/ZnS heterojunction solar cell was fabricated and subjected to electrical characterization in dark and illuminated conditions. A conversion efficiency of 1.16% was achieved for the device.
|
5 |
Elaboration de matériaux nanostructurés pour piles à combustible SOFC : application à Nd2NiO4+d et Ce1-xAxO2-y / Elaboration of nanostructured materials for Solid Oxide Fuel Cells : application to Nd2NiO4+d and Ce1-xAxO2-dMesguich, David 23 June 2010 (has links)
Le développement actuel des piles à combustible SOFC fonctionnant à température intermédiaire suppose l'optimisation des méthodes de synthèse et de mise en forme pour les matériaux nouveaux développés au cours des dernières années. En effet, les propriétés électrochimiques de ces dispositifs sont étroitement liées aux caractéristiques des poudres de départ ainsi qu'à la microstructure des électrodes (ou de l'électrolyte) après leur mise en forme. Une amélioration significative des dites propriétés peut être obtenue par la nanostructuration des matériaux. Dans ce contexte, ce travail de thèse est consacré à l’élaboration du matériau de cathode Nd2NiO4+d ainsi que du matériau d'électrolyte Ce1-xAxO2-d. Les méthodes mises en œuvre sont la synthèse de nanopoudres en milieux éthanol/eau supercritiques et par voie pyrosol ainsi que le dépôt de couches minces en milieu CO2 supercritique. Les objets obtenus ont enfin été caractérisés par spectroscopie d'impédance électrochimique afin de quantifier leur performance pour l’application SOFC. / The ongoing development of Intermediate Temperature Solid Oxide Fuel Cells implies the optimization of the synthesis and deposition methods for the new materials developed these past years. Indeed, electrochemical properties of these materials are closely linked to the initial powder characteristics as well as the electrode (or electrolyte) microstructure after deposition. Significant improvement of the aforementioned properties can be obtained via nanostructuration of the materials. Thus, this thesis is dedicated to the synthesis of the cathode material Nd2NiO4+d and the electrolyte material Ce1-xAxO2-d. Methods employed are namely nanopowder synthesis in water/ethanol supercritical mixtures and spray pyrolysis as well as thin film deposition in supercritical fluids. The obtained objects have finally been characterized by electrochemical impedance spectroscopy in order to assess their performance for the SOFC application.
|
Page generated in 0.0919 seconds