• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 10
  • 3
  • 2
  • 1
  • Tagged with
  • 35
  • 35
  • 35
  • 13
  • 12
  • 12
  • 11
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Degradação hidromecânica de rochas brandas silto-argilosas / Hydro mechanical degradation of silty-clay soft rocks

João Cândido Valenga Parizotto 24 September 2015 (has links)
Este trabalho caracterizou os siltitos do Grupo Itararé, rocha branda proveniente da amostragem de pedreira localizada nas proximidades de futuro empreendimento brasileiro, o Trem de Alta Velocidade. Objetivou entender as causas da pronunciada e rápida alteração da rocha intacta, e simular, em condições controladas de laboratório, a degradação hidromecânica causada pela simples variação da umidade relativa do ar. Para tal, estabeleceu-se técnica de amostragem de testemunhos por meio da extração via seca com ar-comprimido, e processo de intemperismo artificial, composto por 4 ciclos de 2 etapas (secagem e umedecimento). O processo se deu em dessecadores, sendo a variação da umidade ocasionada pela técnica do vapor e sílica gel. O acompanhamento da degradação dos corpos de prova efetuou-se com duas técnicas não-destrutivas de propagação de ondas: o pulso ultrassônico e a excitação por impulso (sistema Sonelastic). Em paralelo, realizou-se a caracterização geotécnica dos siltitos em umidade natural, com ensaios mineralógicos, físicos, físico-mecânicos, físico-químicos e de alteração laboratorial. Por meio desta metodologia, foi possível estimar as minorações do módulo de deformabilidade e da resistência, além das causas físico-químicas da degradação. / This work characterized the siltstones of the Itararé Group, a soft rock sampled in a quarry located near a future Brazilian venture, the High Speed Train. It aims at understanding the causes of the pronounced and fast changes of the intact rock, and simulate in controlled laboratory conditions the hydro degradation process caused by simple variation of relative air humidity. Dry sampling technique with compressed air was used to extract samples from blocks, and the process of artificial weathering consisted on 4 cycles of 2 steps (drying and wetting). The process occurred in desiccators, where moisture variation was caused by the vapor technique and silica gel. The monitoring of the specimens degradation was performed with two non-destructive wave propagation techniques: the ultrasonic pulse and the impulse excitation (Sonelastic system). A geotechnical characterization of the siltstones in natural moisture condition was made in parallel, consisting on mineralogical, physical, physical-mechanical, physical-chemical and durability tests. By this methodology, it was possible to estimate the mitigation of the deformability modulus and strength besides the physical- chemical causes of degradation.
32

Variability in Construction of Cement-Treated Base Layers: Probabilistic Analysis of Pavement Life Using Mechanistic-Empirical Approach

Rogers, Tyler J. 23 November 2009 (has links) (PDF)
The primary objective of this research was to quantify the improvement in service life of a flexible pavement constructed using full-depth reclamation (FDR) in conjunction with cement stabilization when specified reductions in the spatial variability of specific construction-related parameters are achieved. This study analyzed pavement data obtained through field and laboratory testing of a reconstruction project in northern Utah. Data analyses included multivariate regression, Monte Carlo simulation, and mechanistic-empirical analyses of a model pavement structure. The results of the research show a steadily increasing trend in 28-day unconfined compressive strength of the cement-treated base (CTB) layer with increasing reductions in variability for cement content, moisture content, and reclaimed asphalt pavement (RAP) content across each of five different reliability levels. The most significant increases in CTB strength occurred with reductions in the standard deviations of moisture content and RAP content. Decreasing the variability of cement content did not provide significant additional strength to the CTB layer. Therefore, when involved on FDR projects, members of the pavement industry should focus energy on reducing the variability of both moisture content and RAP content, which both significantly impact pavement life, to achieve high-quality, long-lasting pavements.
33

Nestmelené a stmelené směsi z betonového recyklátu dálnice D1 / Unbound and bound mixtures from recycled concrete of highway D1

Mikulíková, Petra January 2014 (has links)
The work is divided into two parts. The first part deals with the description of unbound and bound base layers and their comparison. Furthermore is presented the description of the recycled concrete, its properties, production, improvement and issues. International experiences with recycled concrete technology are described as well. The practical part is focused on laboratory testing of concrete recycled material taken from the highway D1. The aim of this part is to determine whether the concrete can be recycled back into unbound or bound base layers and concrete casing.
34

Evaluation of the geochemical and mineralogical transformation at an old copper mine tailings dump in Musina, Limpopo Province, South Africa

Thobakgale, Rendani 18 September 2017 (has links)
MENVSC / Department of Ecology and Resource Management / Historically, mining activities have generated vast quantities of abandoned tailings dumps in several regions of South Africa and throughout the world. The management and disposal of huge volumes of tailings dumps has constituted a major challenge to the environment. The current study aims to establish the physicochemical properties and mineralogical characterization of the old copper tailings dump in Musina, to reveal the mobility patterns and attenuation dynamics of potentially toxic or heavy metal species as a function of depth, with a view of assessing their potential environmental impact with respect to surface and ground water systems. This information is crucial in the beneficial utilization of copper tailings in the development of sustainable construction materials as part of reuse approach management system. About twelve tailings samples were collected into polyethylene plastic bags from three established tailings profiles drilled by a hand auger. The collected tailings samples were characterized using standard analytical procedures i.e., X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS). The transfer of potentially toxic or heavy metal species from tailings to water was evaluated using the standardized batch leaching test (EN 12457) and speciation-equilibrium calculations on the aqueous extracts performed by MINTEQA2. The leachate concentration of cations in the collected tailings samples was determined by inductively coupled mass spectrometry (ICP-MS) and the leachate concentration of anions was determined by ion chromatography (IC). A modified sequential extraction scheme was applied on the selected tailings samples of the drilled tailings profiles to further understand the mode of occurrence, the geochemical partitioning and distribution, real mobility, and environmental bioavailability of potentially toxic or heavy metal species in the tailings and tailings-soil interface. The extracted fractions or phases from sequential scheme were as follows: (F1) water-soluble fraction, (F2) exchangeable fraction, (F3) carbonate fraction, (F4) iron and manganese hydroxide associated fraction, (F5) organic matter and secondary sulphide associated fraction, (F6) primary sulphide bound fraction, and (F7) residual or silicate fraction. The results obtained from the seven steps sequential extraction scheme were validated by the determination vi of percentage recoveries from pseudo-total digestion or total metal content of the original sample. The distribution of major elements and potentially toxic or heavy metal species in different leachate fractions obtained after each step of sequential extraction of the selected tailings samples was determined by inductively coupled plasma mass spectrometry (ICP-MS). The appraised data was used to reveal the impact of atmospheric oxygen and infiltrating rain-water on the chemistry of copper tailings dump by depth profiles. Macroscopic properties revealed that the abandoned Musina copper tailings are fine to medium coarse grained, and range in color from light/dark gray at the upper or shallow depth of the tailings, to dark reddish-brown at the deeper zone where the tailings are mixed with the underlying soil or soil-interface. The drilled respective tailings profiles were uniform and slightly varied in both mineralogical and bulk chemical compositions with tailings depth. Mineralogical analysis showed the following order of mineralogical composition within the respective tailings profiles: quartz> epidote> chlorite> muscovite> calcite> hematite. Chalcopyrite was the only sulphide mineral observed by optical microscopy, although not identified or quantified by XRD and SEM-EDS analysis. The observed discrete chalcopyrite grains were attributed to the primary mined ore (i.e., chalcopyrite, chalcocite and bornite) during past copper mining activities in Musina. The tailings profiles were characterized by a medium alkaline pH (7.97-8.37) that corresponds very well with the tailings leachates or pore-water pH (8.36-8.46). This pH was constant and slightly varied with tailings depth in the respective tailings profiles. The high abundance of alumino-silicate minerals and traces of carbonates as calcite coupled with low sulphide mineral content, suggested a high neutralization capacity of the tailings which was in common agreement with an alkaline nature of the copper tailings dump. The chemical composition of major elements within the respective tailings profiles followed the order: Si>Al>Fe>Ca>Mg>K>Na, and corresponds very well with the mineralogical composition of the tailings, whereby alumino-silicates were the most abundant minerals in the tailings samples. Nevertheless, the solid-phase concentration of metals decreases with increasing tailings depth as Cu>Sr>Zr>Ni>Zn and was incongruent with the mineralogical composition within the respective tailings profiles. The main secondary minerals were calcite and hematite, and their proportion increased with increasing tailings vii depth. In addition, hematite formed coatings on the rims and corners of chlorite as observed from optical microscopy, and retained relatively high amounts of potentially toxic or heavy metals (up to 862 ppm of Cu, up to 36 ppm of Ni, and up to 25 ppm of Zn) at the upper and shallow depth of the respective tailings profiles, where bulk density was high and low porosity. Based on batch leaching tests, the amounts of potentially toxic or heavy metal species released into solution were low (0.27-0.34 μg/L Pb, 0.54-0.72 μg/L Ni, 0.88-1.80 μg/L Zn, and 20.21-47.9 μg/L Cu) and decreases with increasing tailings depth, indicating that, presently, the tailings have a minor impact on heavy metals load transported to the receiving surface and groundwater systems. The low concentration of potentially toxic or heavy metal species in solution is primarily due to their retention by secondary Fe oxide phases (i.e., hematite) and the prevailing medium alkaline pH condition of the tailings leachate or pore-water. The observations are consistent with MINTEQA2 speciation calculations, which predicted the precipitation of secondary phase cuprite (Cu2O) as the main solubility-controlling mineral phase for Cu, Zn, and Ni. Primary factors influencing aqueous chemistry at the site are neutralization and dissolution reactions as a function of pH, precipitation, and sorption into hydrous oxides (hematite and cuprite). Based on sequential extraction results, the leachable concentration of potentially toxic or heavy metal species in the water-soluble, exchangeable and carbonate fractions of the respective tailings profiles was relatively low, except for Cu and Mn. For instance, the leachable concentration of Cu and Mn reached 10.84 mg/kg and 321.7 mg/kg at the tailings-soil interface (3 m) in tailings profile C, respectively. The low concentration of potentially toxic or heavy metal species (Cr, Co, Ni, Zn, Cd, and Pb) in these fractions could be due to the low solubility of minerals bearing these trace elements caused by variations in pore-water pH in the respective tailings profiles. The high concentration of Cu and Mn in these fractions suggests their high mobility and therefore most available for uptake in the environment. Except for Cu>Mn>Cr, the contents of potentially toxic or heavy metal species in the Fe and Mn oxides and organic matter or sulphides bound fractions was low, due to the low viii quantity of these fractions in the tailings, despite their high affinity and sorption capacity for potentially toxic or heavy metal species. Likewise, the residual fraction of the respective tailings profiles contained the highest proportion of potentially toxic or heavy metal species. Although the highest potentially toxic or heavy metal species content was in fractions with limited mobility, care must be taken since any geochemical change or shift in the tailings pH or acidic conditions may cause them to be displaced to more mobile fractions, thereby increasing their mobility and environmental bioavailability. Therefore, physicochemical properties of the tailings including pH and mineralogical composition of the tailings samples were the main substrate controlling the geochemical partitioning and distribution, potential mobility, and environmental bioavailability of potentially toxic or heavy metal species by tailings depth. The knowledge of mobility and eco-toxicological significance of tailings is needed when considering tailings dump disposal or reuse in the environment. The addition of copper tailings at 3 and 28 days successfully improved the compressive strength of cement mortar mixtures incorporating tailings at C5 (5%) and C10 (10%) respectively, although with small margin relative to the control mixture (C0). The maximum strength was 31.15 Mpa attained after 28 curing days, and slightly varied when compared with other compressive strength on copper blended cement mortars mixtures in other countries, used for the development of sustainable construction materials. The chemical composition, physical properties and improved compressive strength on cement mortars mixtures incorporating copper tailings, implies that copper tailings are suitable for the development of sustainable construction materials, thereby ensuring job creation, availability of land for development usage, and the reduction of environmental pollution induced by the abandoned copper tailings dumps.
35

Dvoufázový systém stabilizace podloží vozovek / Double-stage system of subgrade stabilization

Švarcová, Monika January 2019 (has links)
This diploma thesis is focused on the properties of unsuitable and conditionally unsuitable fine-grained soils after a one-stage or two-stage treatment by using a binder. The theoretical part occupies with problematical properties of the fine grained soils in a subgrade and a possible technology of the change of these properties. The laboratory testing of treated soils is described and a practical technology of the one stage and two-stage stabilization. In the practical part the fine grained soils are treated by one-stage or two-stage stabilization. For the one stage stabilization the cement is used, for the two-stage stabilization the properties of the soil are improved by lime and then the soil is stabilized by cement. The treated soils are laboratory tested, the initial bearing index IBI, California bearing ratio CBR, unconfined compressive strength and frost susceptibility is tested. Based on the results of the laboratory tests the benefit of the two-stage stabilization is measured.

Page generated in 0.0704 seconds