Spelling suggestions: "subject:"inités dde stark"" "subject:"inités dde spark""
1 |
Contribution à l'étude de la conjecture de Gras et de la conjecture principale d'Iwasawa, par les systèmes d'EulerViguié, Stéphane 12 December 2011 (has links) (PDF)
Le but de ce travail est de montrer comment la théorie des systèmes d'Euler permet de comparer, dans certaines extensions abéliennes, le module galoisien des unités globales modulo unités de Stark avec le module galoisien des p-classes d'idéaux. On ne s'intéresse ici qu'aux extensions abéliennes ayant pour corps de base k un corps quadratique imaginaire, ou un corps global de caractéristique non nulle. La conjecture de Gras prévoit que pour toute extension abélienne finie K/k, tout nombre premier p premier à [K : k], et tout Qp-caractère ψ irréductible et non trivial de Gal (K/k), les ψ-parties du groupe des p-classes de K et du groupe des unités de K modulo le groupe des unités de Stark ont le même cardinal. Après avoir démontré une version faible de la conjecture, nous reprenons la méthode des systèmes d'Euler afin d'étendre les résultats obtenus entre autres par Rubin, Xu et Zhao. Ensuite nous nous plaçons dans le cas où k est un corps quadratique imaginaire uniquement, et nous considérons une certaine Zp-extension k∞ de k, où p est un nombre premier différent de 2 et 3, décomposé dans k. Nous démontrons que pour toute extension finie K∞ de k∞ abélienne sur k, et tout Cp-caractère irréductible χ du sous-groupe de torsion de Gal(K∞/k), les idéaux caractéristiques des χ-quotients du module des p-classes et du module des unités modulo unités de Stark sont les mêmes. Il s'agit d'une des versions de la conjecture principale de la théorie d'Iwasawa, qui élargit un résultat de Rubin et Bley. C'est aussi une étape pour un travail ultérieur, où nous étendons un résultat de Rubin concernant la conjecture principale à deux variables
|
2 |
Contribution à l’étude de la conjecture de Gras et de la conjecture principale d’Iwasawa, par les systèmes d’Euler / Contribution of the study of Gras conjecture and Iwasawa’s main conjecture, by Euler systemsViguié, Stéphane 12 December 2011 (has links)
Le but de ce travail est de montrer comment la théorie des systèmes d’Euler permet de comparer, dans certaines extensions abéliennes, le module galoisien des unités globales modulo unités de Stark avec le module galoisien des p-classes d’idéaux. On ne s’intéresse ici qu’aux extensions abéliennes ayant pour corps de base k un corps quadratique imaginaire, ou un corps global de caractéristique non nulle. La conjecture de Gras prévoit que pour toute extension abélienne finie K/k, tout nombre premier p premier à [K : k], et tout Qp-caractère ψ irréductible et non trivial de Gal (K/k), les ψ-parties du groupe des p-classes de K et du groupe des unités de K modulo le groupe des unités de Stark ont le même cardinal. Après avoir démontré une version faible de la conjecture, nous reprenons la méthode des systèmes d’Euler afin d’étendre les résultats obtenus entre autres par Rubin, Xu et Zhao. Ensuite nous nous plaçons dans le cas où k est un corps quadratique imaginaire uniquement, et nous considérons une certaine Zp-extension k∞ de k, où p est un nombre premier différent de 2 et 3, décomposé dans k. Nous démontrons que pour toute extension finie K∞ de k∞ abélienne sur k, et tout Cp-caractère irréductible χ du sous-groupe de torsion de Gal(K∞/k), les idéaux caractéristiques des χ-quotients du module des p-classes et du module des unités modulo unités de Stark sont les mêmes. Il s'agit d'une des versions de la conjecture principale de la théorie d’Iwasawa, qui élargit un résultat de Rubin et Bley. C'est aussi une étape pour un travail ultérieur, où nous étendons un résultat de Rubin concernant la conjecture principale à deux variables / The goal of this work is to show how Euler systems allows us to compare, for some abelian extensions, the Galois module of global units modulo Stark units with the Galois module of ideal p-classes. We restricts ourselves to abelian extensions over a base field k which can be an imaginary quadratic field or a global field of positive characteristic. The Gras conjecture predicts that for all finite abelian extension K/k, all prime number p not dividing [K : k], and all irreducible and nontrivial Qp-character ψ of Gal (K/k), the ψ-part of the p-class group of K and the ψ-part of the group of global units modulo Stark units have the same cardinal. First we prove a weak form of the conjecture, and then we use Euler systems to extend the results obtained among others by Rubin, Xu et Zhao. Then we assume that k is an imaginary quadratic field, and we consider a special Zp-extension k∞ of k, where p is a prime number different from 2 and 3, decomposed in k. We prove that for all finite extension K∞ of k∞ abelian over k, and for all irreducible Cp-character χ of the torsion subgroup of Gal(K∞/k), the characteristic ideal of the χ-quotients of the module of p-classes and the characteristic ideal of the module of global units modulo Stark units are the same. It is one of the versions of the main conjecture in Iwasawa theory, which extends a result of Rubin and Bley. It is also a step for a further work, where we extend a result of Rubin on the two variables main conjecture
|
3 |
Stark-Heegner points and p-adic L-functions / Points de Stark-Heegner et fonctions L p-adiquesCasazza, Daniele 28 October 2016 (has links)
Soit K|Q un corps de nombres et soit ζK(s) sa fonction L complexe associée. La formule analytique du nombre de classes fournit un lien entre les valeurs spéciales de ζK(s) et les invariants du corps K. Elle admet une version Galois-équivariante. On a un schema similaire pour les courbes elliptiques. Soit E/Q une courbe elliptique et soit L(E/Q, s) sa fonction L complexe associée. La conjecture de Birch et Swinnerton-Dyer prédit un lien entre le comportement de L(E/Q, s) au point s = 1 et la structure des solutions rationnelles de l’équation definie par E. Comme la formule analytique du nombre de classes, la conjecture de Birch et Swinnerton-Dyer admet une version équivariante. La conjecture de Stark elliptique formulée par H. Darmon, A. Lauder et V. Rotger propose un analogue p-adique de la conjecture de Birch et Swinnerton-Dyer équivariante, qui nécessite certaines hypothèses. Dans leur article, les auteurs formulent la conjecture et donnent une démonstration dans certains cas où E a bonne réduction en p. Pour cela, ils utilisent la méthode de Garrett-Hida qui conduit à une factorisation de fonctions L p-adiques. Dans cette thèse on se concentre sur la conjecture de Stark elliptique et l’on montre comme il est possible d’étendre le résultat de Darmon, Lauder et Rotger. Dans le cas où E a bonne réduction en p on peut étendre le résultat en utilisant la méthode de Hida- Rankin. Cette méthode nous donne un contrôle meilleur sur les constantes apparaissant dans les formules et nous amène à une formule explicite contenant les invariants de la courbe elliptique. Pour obtenir le résultat on adapte la preuve du théorème principal de Darmon, Lauder et Rotger à notre cas et on utilise une formule p-adique de Gross et Zagier qui relie les valeurs spéciales de la fonction L padique de Bertolini-Darmon-Prasanna et les points de Heegner. Ensuite on voit comment étendre notre résultat et celui de Darmon-Lauder-Rotger au cas où E a réduction multiplicative en p. Dans ce cadre, on ne peut pas utiliser la fonction L p-adique de Bertolini-Darmon-Prasanna en raison de problèmes techniques. Pour éliminer cette difficulté on consid`ere la fonction L p-adique de Castellà. On utilise aussi la méthode de Garrett-Hida ainsi que la méthode d’Hida-Rankin et l’on obtient des résultats similaires aux cas de bonne réduction. / Let K|Q be a number field and let ζK(s) be its associated complex L-function. The analytic class number formula relates special values of ζK(s) with algebraic invariants of the field K itself. It admits a Galois equivariant refinement known as Stark conjectures. We have a very similar picture in the case of elliptic curves. Let E/Q be an elliptic curve and let L(E/Q, s) be its associated complex L-function. The conjecture of Birch and Swinnerton-Dyer relates the behaviour of L(E/Q, s) at s = 1 to the structure of rational solutions of the equation defined by E. The equivariant Birch and Swinnerton- Dyer conjecture is obtained including in the picture the action of Galois groups. The elliptic Stark conjecture formulated by H. Darmon, A. Lauder and V. Rotger purposes a p-adic analogue of the equivariant Birch and Swinnerton-Dyer conjecture, under several assumption. In their paper, the authors formulate the conjecture and prove it in some cases of good reduction of E at p using Garrett-Hida method and performing a factorization of p-adic L-functions. In this dissertation we focus on the elliptic Stark conjecture and we show how it is possible to extend the result of Darmon, Lauder and Rotger. In the case of good reduction of E at p we can slightly extend the result using Hida- Rankin method. This method also gives us a better control of the constants appearing in the result, thus yielding an explicit formula which contains invariants associated with the elliptic curve. To achieve the proof we mimic the main result of Darmon, Lauder and Rotger in our setting and we make use of a p-adic Gross-Zagier formula which relates special values of the Bertolini-Darmon-Prasanna p-adic L-function to Heegner points. In a second moment we extend both our result and Darmon-Lauder-Rotger result to the case of multi- plicative reduction of E at p. In this setting we cannot use Bertolini- Darmon Prasanna p-adic L-function due to some technical reasons. In order to avoid the problem we consider Castellà’s two variables p-adic L-function. We use both Garrett-Hida method and Hida-Rankin method. In the two cases we obtain formulae which are similar to those of the good reduction setting.
|
Page generated in 0.0499 seconds