• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 12
  • 6
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 63
  • 34
  • 20
  • 14
  • 14
  • 13
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Vibration Measurement Based Damage Identification for Structural Health Monitoring

Bisht, Saurabh Singh 14 January 2011 (has links)
The focus of this research is on the development of vibration response-based damage detection in civil engineering structures. Modal parameter-based and model identification-based approaches have been considered. In the modal parameter-based approach, the flexibility and curvature flexibility matrices of the structure are used to identify the damage. It is shown that changes in these matrices can be related to changes in stiffness values of individual structural members. Using this relationship, a method is proposed to solve for the change in stiffness values. The application of this approach is demonstrated on the benchmark problem developed by the joint International Association of Structural Control and American Society of Civil Engineers Structural Health Monitoring task group. The proposed approach is found to be effective in identifying various damage scenarios of this benchmark problem. The effect of missing modes on the damage identification scheme is also studied. The second method for damage identification aims at identifying sudden changes in stiffness for real time applications. It is shown that the high-frequency content of the response acceleration can be used to identify the instant at which a structure suffers a sudden reduction in its stiffness value. Using the Gibb's phenomenon, it is shown why a high-pass filter can be used for identifying such damages. The application of high-pass filters is then shown in identifying sudden stiffness changes in a linear multi-degree-of-freedom system and a bilinear single degree of freedom system. The impact of measurement noise on the identification approach is also studied. The noise characteristics under which damage identification can or cannot be made are clearly identified. The issue of quantification of the stiffness reduction by this approach is also examined. It is noted that even if the time at which the reduction in stiffness happens can be identified, the quantification of damage requires the knowledge of system displacement values. In principle, such displacements can be calculated by numerical integration of the acceleration response, but the numerical integrations are known to suffer from the low frequency drift error problems. To avoid the errors introduced due to numerical integration of the acceleration response, an approach utilizing the unscented Kalman filter is developed to track the sudden changes in stiffness values. This approach is referred to as the adaptive unscented Kalman filter (AUKF) approach. The successful application of the proposed AUKF approach is shown on two multi-degree of freedom systems that experience sudden loss of stiffness values while subjected to earthquake induced base excitation. / Ph. D.
12

Nonlinear State Estimation in Polymer Electrolyte Membrane Fuel Cells

Tumuluri, Uma January 2008 (has links)
No description available.
13

Estimação não linear de estado através do unscented Kalman filter na tomografia por impedância elétrica. / Nonlinear state estimation using the Unscented Kalman filter in electrical impedance tomography.

Moura, Fernando Silva de 26 February 2013 (has links)
A Tomografia por Impedância Elétrica tem como objetivo estimar a distribuição de impedância elétrica dentro de uma região a partir de medidas de potencial elétrico coletadas apenas em seu contorno externo quando corrente elétrica é imposta neste mesmo contorno. Uma das aplicações para esta tecnologia é o monitoramento das condições pulmonares de pacientes em Unidades de Tratamento Intensivo. Dentre vários algoritmos, destacam-se os filtros de Kalman que abordam o problema de estimação sob o ponto de vista probabilístico, procurando encontrar a distribuição de probabilidade do estado condicionada à realização das medidas. Para que estes filtros possam ser utilizados, um modelo de evolução temporal do sistema sendo observado deve ser adotado. Esta tese propõe o uso de um modelo de evolução para a variação de volume de ar nos pulmões durante a respiração de um paciente sob ventilação artificial. Este modelo é utilizado no unscented Kalman filter, uma extensão não linear do filtro de Kalman. Tal modelo é ajustado em paralelo à estimação do estado, utilizando um esquema dual de estimação. Um algoritmo de segmentação de imagem é proposto para identificar as regiões pulmonares nas imagens estimadas e assim utilizar o modelo de evolução. Com o intuito de melhorar as estimativas, o método do erro de aproximação é utilizado no modelo de observação para mitigar os erros de modelagem e informação a priori é adicionada na solução do problema inverso mal-posto. O método é avaliado através de simulações numéricas e ensaio experimental coletado em um voluntário. Os resultados mostram que o método proposto melhora as estimativas feitas pelo filtro de Kalman, propiciando a visualização de imagens absolutas, dinâmicas e com bom nível de contraste entre os tecidos e órgãos internos. / Electrical impedance tomography estimates the electrical impedance distribution within a region given a set of electrical potential measurements acquired along its boundary at the same time that electrical currents are imposed on the same boundary. One of the applications of this technology is lung monitoring of patients in Intensive Care Units. One class of algorithms employed for the estimation are the Kalman filters which deal with the estimation problem in a probabilistic framework, looking for the probability density function of the state conditioned to the acquired measurements. In order to use such filters, an evolution models of the system must be employed. This thesis proposes an evolution model of the variation of air in the lungs of patients under artificial ventilation. This model is used on the Unscented Kalman Filter, a nonlinear extension of the Kalman filter. This model is adjusted in parallel to the state estimation, in a dual estimation scheme. An image segmentation algorithm is proposed for identifying the lungs in the images. In order to improve the estimate, the approximation error method is employed for mitigating the observation model errors and prior information is added for the solution of the ill-posed inverse problem. The method is evaluated with numerical simulations and with experimental data of a volunteer. The results show that the proposed method increases the quality of the estimates, allowing the visualization of absolute and dynamic images, with good level of contrast between the tissues and internal organs.
14

Detekcija malicioznih napada na elektroenergetski sistem korišćenjem sinergije statičkog i dinamičkog estimatora stanja / Detection of False Data Injection Attacks on Power System using a synergybased approach between static and dynamic state estimators

Živković Nemanja 23 January 2019 (has links)
<p>U ovoj doktorskoj disertaciji predložena je nova metoda za detekciju malicioznih napada injektiranjem loših merenja na elektroenergetski sistem. Predloženi algoritam baziran je na sinergiji statičke i dinamičke estimacije stanja, i u stanju je da detektuje ovaj tip napada u realnom vremenu, za najkritičniji scenario gde napadač ima potpuno znanje o sistemu, i neograničen pristup resursima.</p> / <p>This PhD thesis proposes a novel method for detection of malicious false data<br />injection attacks on power system. The proposed algorithm is based on<br />synergy between static and dynamic state estimators, and is capable of<br />detecting the forementioned attacks in real time, for the most critical scenarios,<br />where an attacker has complete knowledge about the compromised power<br />system and unlimited resources to stage an attack.</p>
15

Estimação não linear de estado através do unscented Kalman filter na tomografia por impedância elétrica. / Nonlinear state estimation using the Unscented Kalman filter in electrical impedance tomography.

Fernando Silva de Moura 26 February 2013 (has links)
A Tomografia por Impedância Elétrica tem como objetivo estimar a distribuição de impedância elétrica dentro de uma região a partir de medidas de potencial elétrico coletadas apenas em seu contorno externo quando corrente elétrica é imposta neste mesmo contorno. Uma das aplicações para esta tecnologia é o monitoramento das condições pulmonares de pacientes em Unidades de Tratamento Intensivo. Dentre vários algoritmos, destacam-se os filtros de Kalman que abordam o problema de estimação sob o ponto de vista probabilístico, procurando encontrar a distribuição de probabilidade do estado condicionada à realização das medidas. Para que estes filtros possam ser utilizados, um modelo de evolução temporal do sistema sendo observado deve ser adotado. Esta tese propõe o uso de um modelo de evolução para a variação de volume de ar nos pulmões durante a respiração de um paciente sob ventilação artificial. Este modelo é utilizado no unscented Kalman filter, uma extensão não linear do filtro de Kalman. Tal modelo é ajustado em paralelo à estimação do estado, utilizando um esquema dual de estimação. Um algoritmo de segmentação de imagem é proposto para identificar as regiões pulmonares nas imagens estimadas e assim utilizar o modelo de evolução. Com o intuito de melhorar as estimativas, o método do erro de aproximação é utilizado no modelo de observação para mitigar os erros de modelagem e informação a priori é adicionada na solução do problema inverso mal-posto. O método é avaliado através de simulações numéricas e ensaio experimental coletado em um voluntário. Os resultados mostram que o método proposto melhora as estimativas feitas pelo filtro de Kalman, propiciando a visualização de imagens absolutas, dinâmicas e com bom nível de contraste entre os tecidos e órgãos internos. / Electrical impedance tomography estimates the electrical impedance distribution within a region given a set of electrical potential measurements acquired along its boundary at the same time that electrical currents are imposed on the same boundary. One of the applications of this technology is lung monitoring of patients in Intensive Care Units. One class of algorithms employed for the estimation are the Kalman filters which deal with the estimation problem in a probabilistic framework, looking for the probability density function of the state conditioned to the acquired measurements. In order to use such filters, an evolution models of the system must be employed. This thesis proposes an evolution model of the variation of air in the lungs of patients under artificial ventilation. This model is used on the Unscented Kalman Filter, a nonlinear extension of the Kalman filter. This model is adjusted in parallel to the state estimation, in a dual estimation scheme. An image segmentation algorithm is proposed for identifying the lungs in the images. In order to improve the estimate, the approximation error method is employed for mitigating the observation model errors and prior information is added for the solution of the ill-posed inverse problem. The method is evaluated with numerical simulations and with experimental data of a volunteer. The results show that the proposed method increases the quality of the estimates, allowing the visualization of absolute and dynamic images, with good level of contrast between the tissues and internal organs.
16

Attitude and Trajectory Estimation for Small Suborbital Payloads

Yuan, Yunxia January 2017 (has links)
Sounding rockets and small suborbital payloads provide a means for research in situ of the atmosphere and ionosphere. The trajectory and the attitude of the payload are critical for the evaluation of the scientific measurements and experiments. The trajectory refers the location of the measurement, while the attitude determines the orientation of the sensors. This thesis covers methods of trajectory and attitude reconstruction implemented in several experiments with small suborbital payloads carried out by the Department of Space and Plasma Physics in 2012--2016. The problem of trajectory reconstruction based on raw GPS data was studied for small suborbital payloads. It was formulated as a global least squares optimization problem. The method was applied to flight data of two suborbital payloads of the RAIN REXUS experiment. Positions and velocities were obtained with high accuracy. Based on the trajectory reconstruction technique, atmospheric densities, temperatures, and horizontal wind speeds below 80 km were obtained using rigid free falling spheres of the LEEWAVES experiment. Comparison with independent data indicates that the results are reliable for densities below 70 km, temperatures below 50 km, and wind speeds below 45 km. Attitude reconstruction of suborbital payloads from yaw-pitch-roll Euler angles was studied. The Euler angles were established by two methods: a global optimization method and an Unscented Kalman Filter (UKF) technique. The comparison of the results shows that the global optimization method provides a more accurate fit to the observations than the UKF. Improving the results of the falling sphere experiments requires understanding of the attitude motion of the sphere. An analytical consideration was developed for a free falling and axisymmetric sphere under aerodynamic torques. The motion can generally be defined as a superposition of precession and nutation. These motion phenomena were modeled numerically and compared to flight data. / <p>QC 20170510</p>
17

Particle tracking using the unscented Kalman filter in high energy physics experiments

Akhtar, Jahanzeb January 2015 (has links)
The extended Kalman lter (EKF) has a long history in the field of non-linear tracking. More recently, statistically-based estimators have emerged that avoid the need for a deterministic linearisation process. The Unscented Kalman filter (UKF) is one such technique that has been shown to perform favourably for some non-linear systems when compared to an EKF implementation, both in terms of accuracy and robustness. In this Thesis, the UKF is applied to a high energy physics particle tracking problem where currently the EKF is being implemented. The effects of measurement redundancy are investigated to determine improvements in accuracy of particle track reconstruction. The relationship between measurement redundancy and relative observability is also investigated through an experimental and theoretical analysis. Smoothing (backward filtering), in the high energy physics experiments, is implementedusing the Rauch Tung Striebel (RTS) smoother with the EKF , however, in Unscented Kalman filter algorithms, the Jacobian matrices required by the RTS method, are not available. The Unscented Rauch Tung Striebel (URTS) smoother addresses this problem by avoiding the use of Jacobian matrices but is not effi cient for large dimensional systems such as high energy physics experiments. A technique is implemented in the RTS smoother to make it suitable for the UKF. The method is given the name the Jacobian Equivalent Rauch Tung Striebel (JE-RTS) smoother. The implementation of this method is quite straight forward when the UKF is used as an estimator.
18

Online parameter estimation applied to mixed conduction/radiation

Shah, Tejas Jagdish 29 August 2005 (has links)
The conventional method of thermal modeling of space payloads is expensive and cumbersome. Radiation plays an important part in the thermal modeling of space payloads because of the presence of vacuum and deep space viewing. This induces strong nonlinearities into the thermal modeling process. There is a need for extensive correlation between the model and test data. This thesis presents Online Parameter Estimation as an approach to automate the thermal modeling process. The extended Kalman fillter (EKF) is the most widely used parameter estimation algorithm for nonlinear models. The unscented Kalman filter (UKF) is a new and more accurate technique for parameter estimation. These parameter estimation techniques have been evaluated with respect to data from ground tests conducted on an experimental space payload.
19

Vehicle-terrain parameter estimation for small-scale robotic tracked vehicle

Dar, Tehmoor Mehmoud 02 August 2011 (has links)
Methods for estimating vehicle-terrain interaction parameters for small scale robotic vehicles have been formulated and evaluated using both simulation and experimental studies. A model basis was developed, guided by experimental studies with an iRobot PackBot. The intention was to demonstrate whether a nominally instrumented robotic vehicle could be used as a test platform for generating data for vehicle-terrain parameter estimation. A comprehensive skid-steered model was found to be sensitive enough to distinguish between various forms of unknown terrains. This simulation study also verified that the Bekker model for large scale vehicles adopted for this research was applicable to the small scale robotic vehicle used in this work. This fact was also confirmed by estimating coefficients of friction and establishing their dependence on forward velocity and turning radius as the vehicle traverses different terrains. On establishing that mobility measurements for this robotic were sufficiently sensitive, it was found that estimates could be made of key dynamic variables and vehicle-terrain interaction parameters. Four main contributions are described for reliably and robustly using PackBot data for vehicle-terrain property estimation. These estimation methods should contribute to efforts in improving mobility of small scale tracked vehicles on uncertain terrains. The approach is embodied in a multi-tiered algorithm based on the dynamic and kinematic models for skid-steering as well as tractive force models parameterized by key vehicle-terrain parameters. In order to estimate and characterize the key parameters, nonlinear estimation techniques such as the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and a General Newton Raphson (GNR) method are integrated into this multi-tiered algorithm. A unique idea in using an EKF with an added State Noise Compensation algorithm is presented which shows its robustness and consistency in estimating slip variables and other parameters for deformable terrains. In the multi-tiered algorithm, a kinematic model of the robotic vehicle is used to estimate slip variables and turning radius. These estimated variables are stored in a truth table and used in a skid-steered dynamic model to estimate the coefficients of friction. The total estimated slip on the left and right track, along with the total tractive force computed using a motor model, are then used in the GNR algorithm to estimate the key vehicle-terrain parameters. These estimated parameters are cross-checked and confirmed with EKF estimation results. Further, these simulation results verify that the tracked vehicle tractive force is not dependent on cohesion for frictional soils. This sequential algorithm is shown to be effective in estimating vehicle-terrain interaction properties with relatively good accuracy. The estimated results obtained from UKF and EKF are verified and compared with available experimental data, and tested on a PackBot traversing specified terrains at the Southwest Research Institute (SwRI), Small Robotics Testbed in San Antonio, Texas. In the end, based on the development and evaluation of small scale vehicle testing, the effectiveness of on-board sensing methods and estimation techniques are also discussed for potential use in real time estimation of vehicle-terrain parameters. / text
20

Filtering Approaches for Inequality Constrained Parameter Estimation

Yang, Xiongtan Unknown Date
No description available.

Page generated in 0.1087 seconds