• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 201
  • 21
  • 18
  • 9
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 335
  • 335
  • 124
  • 113
  • 84
  • 81
  • 81
  • 65
  • 64
  • 63
  • 58
  • 49
  • 48
  • 48
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Contributions to machine learning: the unsupervised, the supervised, and the Bayesian

Kégl, Balazs 28 September 2011 (has links) (PDF)
No abstract
182

Composable, Distributed-state Models for High-dimensional Time Series

Taylor, Graham William 03 March 2010 (has links)
In this thesis we develop a class of nonlinear generative models for high-dimensional time series. The first key property of these models is their distributed, or "componential" latent state, which is characterized by binary stochastic variables which interact to explain the data. The second key property is the use of an undirected graphical model to represent the relationship between latent state (features) and observations. The final key property is composability: the proposed class of models can form the building blocks of deep networks by successively training each model on the features extracted by the previous one. We first propose a model based on the Restricted Boltzmann Machine (RBM) that uses an undirected model with binary latent variables and real-valued "visible" variables. The latent and visible variables at each time step receive directed connections from the visible variables at the last few time-steps. This "conditional" RBM (CRBM) makes on-line inference efficient and allows us to use a simple approximate learning procedure. We demonstrate the power of our approach by synthesizing various motion sequences and by performing on-line filling in of data lost during motion capture. We also explore CRBMs as priors in the context of Bayesian filtering applied to multi-view and monocular 3D person tracking. We extend the CRBM in a way that preserves its most important computational properties and introduces multiplicative three-way interactions that allow the effective interaction weight between two variables to be modulated by the dynamic state of a third variable. We introduce a factoring of the implied three-way weight tensor to permit a more compact parameterization. The resulting model can capture diverse styles of motion with a single set of parameters, and the three-way interactions greatly improve its ability to blend motion styles or to transition smoothly among them. In separate but related work, we revisit Products of Hidden Markov Models (PoHMMs). We show how the partition function can be estimated reliably via Annealed Importance Sampling. This enables us to demonstrate that PoHMMs outperform various flavours of HMMs on a variety of tasks and metrics, including log likelihood.
183

Acoustic segment modeling and preference ranking for music information retrieval

Reed, Jeremy T. 27 October 2010 (has links)
This dissertation focuses on improving content-based recommendation systems for music. Specifically, progress in the development in music content-based recommendation systems has stalled in recent years due to some faulty assumptions: 1. most acoustic content-based systems for music information retrieval (MIR) assume a bag-of-frames model, where it is assumed that a song contains a simplistic, global audio texture 2. genre, style, mood, and authors are appropriate categories for machine-oriented recommendation 3. similarity is a universal construct and does not vary among different users The main contribution of this dissertation is to address these faulty assumptions by describing a novel approach in MIR that provides user-centric, content-based recommendations based on statistics of acoustic sound elements. First, this dissertation presents the acoustic segment modeling framework that describes a piece of music as a temporal sequence of acoustic segment models (ASMs), which represent individual polyphonic sound elements. A dictionary of ASMs generated in an unsupervised process defines a vocabulary of acoustic tokens that are able to transcribe new musical pieces. Next, standard text-based information retrieval algorithms use statistics of ASM counts to perform various retrieval tasks. Despite a simple feature set compared to other content-based genre recommendation algorithms, the acoustic segment modeling approach is highly competitive on standard genre classification databases. Fundamental to the success of the acoustic segment modeling approach is the ability to model acoustical semantics in a musical piece, which is demonstrated by the detection of musical attributes on temporal characteristics. Further, it is shown that the acoustic segment modeling procedure is able to capture the inherent structure of melody by providing near state-of-the-art performance on an automatic chord recognition task. This dissertation demonstrates that some classification tasks, such as genre, possess information that is not contained in the acoustic signal; therefore, attempts at modeling these categories using only the acoustic content is ill-fated. Further, notions of music similarity are personal in nature and are not derived from a universal ontology. Therefore, this dissertation addresses the second and third limitation of previous content-based retrieval approaches by presenting a user-centric preference rating algorithm. Individual users possess their own cognitive construct of similarity; therefore, retrieval algorithms must demonstrate this flexibility. The proposed rating algorithm is based on the principle of minimum classification error (MCE) training, which has been demonstrated to be robust against outliers and also minimizes the Parzen estimate of the theoretical classification risk. The outlier immunity property limits the effect of labels that arise from non-content-based sources. The MCE-based algorithm performs better than a similar ratings prediction algorithm. Further, this dissertation discusses extensions and future work.
184

Composable, Distributed-state Models for High-dimensional Time Series

Taylor, Graham William 03 March 2010 (has links)
In this thesis we develop a class of nonlinear generative models for high-dimensional time series. The first key property of these models is their distributed, or "componential" latent state, which is characterized by binary stochastic variables which interact to explain the data. The second key property is the use of an undirected graphical model to represent the relationship between latent state (features) and observations. The final key property is composability: the proposed class of models can form the building blocks of deep networks by successively training each model on the features extracted by the previous one. We first propose a model based on the Restricted Boltzmann Machine (RBM) that uses an undirected model with binary latent variables and real-valued "visible" variables. The latent and visible variables at each time step receive directed connections from the visible variables at the last few time-steps. This "conditional" RBM (CRBM) makes on-line inference efficient and allows us to use a simple approximate learning procedure. We demonstrate the power of our approach by synthesizing various motion sequences and by performing on-line filling in of data lost during motion capture. We also explore CRBMs as priors in the context of Bayesian filtering applied to multi-view and monocular 3D person tracking. We extend the CRBM in a way that preserves its most important computational properties and introduces multiplicative three-way interactions that allow the effective interaction weight between two variables to be modulated by the dynamic state of a third variable. We introduce a factoring of the implied three-way weight tensor to permit a more compact parameterization. The resulting model can capture diverse styles of motion with a single set of parameters, and the three-way interactions greatly improve its ability to blend motion styles or to transition smoothly among them. In separate but related work, we revisit Products of Hidden Markov Models (PoHMMs). We show how the partition function can be estimated reliably via Annealed Importance Sampling. This enables us to demonstrate that PoHMMs outperform various flavours of HMMs on a variety of tasks and metrics, including log likelihood.
185

Étude de techniques d'apprentissage non-supervisé pour l'amélioration de l'entraînement supervisé de modèles connexionnistes

Larochelle, Hugo January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
186

Machine Learning Approaches to Refining Post-translational Modification Predictions and Protein Identifications from Tandem Mass Spectrometry

Chung, Clement 11 December 2012 (has links)
Tandem mass spectrometry (MS/MS) is the dominant approach for large-scale peptide sequencing in high-throughput proteomic profiling studies. The computational analysis of MS/MS spectra involves the identification of peptides from experimental spectra, especially those with post-translational modifications (PTMs), as well as the inference of protein composition based on the putative identified peptides. In this thesis, we tackled two major challenges associated with an MS/MS analysis: 1) the refinement of PTM predictions from MS/MS spectra and 2) the inference of protein composition based on peptide predictions. We proposed two PTM prediction refinement algorithms, PTMClust and its Bayesian nonparametric extension \emph{i}PTMClust, and a protein identification algorithm, pro-HAP, that is based on a novel two-layer hierarchical clustering approach that leverages prior knowledge about protein function. Individually, we show that our two PTM refinement algorithms outperform the state-of-the-art algorithms and our protein identification algorithm performs at par with the state of the art. Collectively, as a demonstration of our end-to-end MS/MS computational analysis of a human chromatin protein complex study, we show that our analysis pipeline can find high confidence putative novel protein complex members. Moreover, it can provide valuable insights into the formation and regulation of protein complexes by detailing the specificity of different PTMs for the members in each complex.
187

Machine Learning Approaches to Refining Post-translational Modification Predictions and Protein Identifications from Tandem Mass Spectrometry

Chung, Clement 11 December 2012 (has links)
Tandem mass spectrometry (MS/MS) is the dominant approach for large-scale peptide sequencing in high-throughput proteomic profiling studies. The computational analysis of MS/MS spectra involves the identification of peptides from experimental spectra, especially those with post-translational modifications (PTMs), as well as the inference of protein composition based on the putative identified peptides. In this thesis, we tackled two major challenges associated with an MS/MS analysis: 1) the refinement of PTM predictions from MS/MS spectra and 2) the inference of protein composition based on peptide predictions. We proposed two PTM prediction refinement algorithms, PTMClust and its Bayesian nonparametric extension \emph{i}PTMClust, and a protein identification algorithm, pro-HAP, that is based on a novel two-layer hierarchical clustering approach that leverages prior knowledge about protein function. Individually, we show that our two PTM refinement algorithms outperform the state-of-the-art algorithms and our protein identification algorithm performs at par with the state of the art. Collectively, as a demonstration of our end-to-end MS/MS computational analysis of a human chromatin protein complex study, we show that our analysis pipeline can find high confidence putative novel protein complex members. Moreover, it can provide valuable insights into the formation and regulation of protein complexes by detailing the specificity of different PTMs for the members in each complex.
188

Unsupervised Identification of the User’s Query Intent in Web Search

Calderón-Benavides, Liliana 27 September 2011 (has links)
This doctoral work focuses on identifying and understanding the intents that motivate a user to perform a search on the Web. To this end, we apply machine learning models that do not require more information than the one provided by the very needs of the users, which in this work are represented by their queries. The knowledge and interpretation of this invaluable information can help search engines to obtain resources especially relevant to users, and thus improve their satisfaction. By means of unsupervised learning techniques, which have been selected according to the context of the problem being solved, we show that is not only possible to identify the user’s intents, but that this process can be conducted automatically. The research conducted in this thesis has involved an evolutionary process that starts from the manual analysis of different sets of real user queries from a search engine. The work passes through the proposition of a new classification of user’s query intents; the application of different unsupervised learning techniques to identify those intents; up to determine that the user’s intents, rather than being considered as an uni–dimensional problem, should be conceived as a composition of several aspects, or dimensions (i.e., as a multi–dimensional problem), that contribute to clarify and to establish what the user’s intents are. Furthermore, from this last proposal, we have configured a framework for the on–line identification of the user’s query intent. Overall, the results from this research have shown to be effective for the problem of identifying user’s query intent. / Este trabajo doctoral se enfoca en identificar y entender las intenciones que motivan a los usuarios a realizar búsquedas en la Web a través de la aplicación de métodos de aprendizaje automático que no requieren datos adicionales más que las necesidades de información de los mismos usuarios, representadas a través de sus consultas. El conocimiento y la interpretación de esta información, de valor incalculable, puede ayudar a los sistemas de búsqueda Web a encontrar recursos particularmente relevantes y así mejorar la satisfacción de sus usuarios. A través del uso de técnicas de aprendizaje no supervisado, las cuales han sido seleccionadas dependiendo del contexto del problema a solucionar, y cuyos resultados han demostrado ser efectivos para cada uno de los problemas planteados, a lo largo de este trabajo se muestra que no solo es posible identificar las intenciones de los usuarios, sino que este es un proceso que se puede llevar a cabo de manera automática. La investigación desarrollada en esta tesis ha implicado un proceso evolutivo, el cual inicia con el análisis de la clasificación manual de diferentes conjuntos de consultas que usuarios reales han sometido a un motor de búsqueda. El trabajo pasa a través de la proposición de una nueva clasificación de las intenciones de consulta de usuarios, y el uso de diferentes técnicas de aprendizaje no supervisado para identificar dichas intenciones, llegando hasta establecer que éste no es un problema unidimensional, sino que debería ser considerado como un problema de múltiples dimensiones, donde cada una de dichas dimensiones, o facetas, contribuye a clarificar y establecer cuál es la intención del usuario. A partir de este último trabajo, hemos creado un modelo para la identificar la intención del usuario en un escenario on–line.
189

Towards Understanding ICU Procedures using Similarities in Patient Trajectories : An exploratory study on the MIMIC-III intensive care database

Galozy, Alexander January 2018 (has links)
Recent advancements in Artificial Intelligence has prompted a shearexplosion of new research initiatives and applications, improving notonly existing technologies, but also opening up opportunities for newand exiting applications. This thesis explores the MIMIC-III intensive care unit database and conducts experiment on an interpretable feature space based on sever-ty scores, defining a patient health state, commonly used to predict mortality in an ICU setting. Patient health state trajectories are clustered and correlated with administered medication and performed procedures to get a better understanding of the potential usefulness in evaluating treatments on their effect on said health state, where commonalities and deviations in treatment can be understood. Furthermore, medication and procedure classification is carried out to explore their predictability using the severity subscore feature space.
190

[en] HYBRID GENETIC ALGORITHM FOR THE MINIMUM SUM-OF-SQUARES CLUSTERING PROBLEM / [pt] ALGORITMO GENÉTICO HÍBRIDO PARA O PROBLEMA DE CLUSTERIZAÇÃO MINIMUM SUM-OF-SQUARES

DANIEL LEMES GRIBEL 27 July 2017 (has links)
[pt] Clusterização desempenha um papel importante em data mining, sendo útil em muitas áreas que lidam com a análise exploratória de dados, tais como recuperação de informações, extração de documentos e segmentação de imagens. Embora sejam essenciais em aplicações de data mining, a maioria dos algoritmos de clusterização são métodos ad-hoc. Eles carecem de garantias na qualidade da solução, que em muitos casos está relacionada a uma convergência prematura para um mínimo local no espaço de busca. Neste trabalho, abordamos o problema de clusterização a partir da perspectiva de otimização, onde propomos um algoritmo genético híbrido para resolver o problema Minimum Sum-of-Squares Clustering (MSSC, em inglês). A meta-heurística proposta é capaz de escapar de mínimos locais e gerar soluções quase ótimas para o problema MSSC. Os resultados mostram que o método proposto superou os resultados atuais da literatura – em termos de qualidade da solução – para quase todos os conjuntos de instâncias considerados para o problema MSSC. / [en] Clustering plays an important role in data mining, being useful in many fields that deal with exploratory data analysis, such as information retrieval, document extraction, and image segmentation. Although they are essential in data mining applications, most clustering algorithms are adhoc methods. They have a lack of guarantee on the solution quality, which in many cases is related to a premature convergence to a local minimum of the search space. In this research, we address the problem of data clustering from an optimization perspective, where we propose a hybrid genetic algorithm to solve the Minimum Sum-of-Squares Clustering (MSSC) problem. This meta-heuristic is capable of escaping from local minima and generating near-optimal solutions to the MSSC problem. Results show that the proposed method outperformed the best current literature results - in terms of solution quality - for almost all considered sets of benchmark instances for the MSSC objective.

Page generated in 0.0851 seconds