• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 201
  • 21
  • 18
  • 9
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 335
  • 335
  • 124
  • 113
  • 84
  • 81
  • 81
  • 65
  • 64
  • 63
  • 58
  • 49
  • 48
  • 48
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Nouvelles méthodes pour l’apprentissage non-supervisé en grandes dimensions. / New methods for large-scale unsupervised learning.

Tiomoko ali, Hafiz 24 September 2018 (has links)
Motivée par les récentes avancées dans l'analyse théorique des performances des algorithmes d'apprentissage automatisé, cette thèse s'intéresse à l'analyse de performances et à l'amélioration de la classification nonsupervisée de données et graphes en grande dimension. Spécifiquement, dans la première grande partie de cette thèse, en s'appuyant sur des outils avancés de la théorie des grandes matrices aléatoires, nous analysons les performances de méthodes spectrales sur des modèles de graphes réalistes et denses ainsi que sur des données en grandes dimensions en étudiant notamment les valeurs propres et vecteurs propres des matrices d'affinités de ces données. De nouvelles méthodes améliorées sont proposées sur la base de cette analyse théorique et démontrent à travers de nombreuses simulations que leurs performances sont meilleures comparées aux méthodes de l'état de l'art. Dans la seconde partie de la thèse, nous proposons un nouvel algorithme pour la détection de communautés hétérogènes entre plusieurs couches d'un graphe à plusieurs types d'interaction. Une approche bayésienne variationnelle est utilisée pour approximer la distribution apostériori des variables latentes du modèle. Toutes les méthodes proposées dans cette thèse sont utilisées sur des bases de données synthétiques et sur des données réelles et présentent de meilleures performances en comparaison aux approches standard de classification dans les contextes susmentionnés. / Spurred by recent advances on the theoretical analysis of the performances of the data-driven machine learning algorithms, this thesis tackles the performance analysis and improvement of high dimensional data and graph clustering. Specifically, in the first bigger part of the thesis, using advanced tools from random matrix theory, the performance analysis of spectral methods on dense realistic graph models and on high dimensional kernel random matrices is performed through the study of the eigenvalues and eigenvectors of the similarity matrices characterizing those data. New improved methods are proposed and are shown to outperform state-of-the-art approaches. In a second part, a new algorithm is proposed for the detection of heterogeneous communities from multi-layer graphs using variational Bayes approaches to approximate the posterior distribution of the sought variables. The proposed methods are successfully applied to synthetic benchmarks as well as real-world datasets and are shown to outperform standard approaches to clustering in those specific contexts.
212

Evaluating clustering techniques in financial time series

Millberg, Johan January 2023 (has links)
This degree project aims to investigate different evaluation strategies for clustering methodsused to cluster multivariate financial time series. Clustering is a type of data mining techniquewith the purpose of partitioning a data set based on similarity to data points in the same cluster,and dissimilarity to data points in other clusters. By clustering the time series of mutual fundreturns, it is possible to help individuals select funds matching their current goals and portfolio. Itis also possible to identify outliers. These outliers could be mutual funds that have not beenclassified accurately by the fund manager, or potentially fraudulent practices. To determine which clustering method is the most appropriate for the current data set it isimportant to be able to evaluate different techniques. Using robust evaluation methods canassist in choosing the parameters to ensure optimal performance. The evaluation techniquesinvestigated are conventional internal validation measures, stability measures, visualizationmethods, and evaluation using domain knowledge about the data. The conventional internalvalidation methods and stability measures were used to perform model selection to find viableclustering method candidates. These results were then evaluated using visualization techniquesas well as qualitative analysis of the result. Conventional internal validation measures testedmight not be appropriate for model selection of the clustering methods, distance metrics, or datasets tested. The results often contradicted one another or suggested trivial clustering solutions,where the number of clusters is either 1 or equal to the number of data points in the data sets.Similarly, a stability validation metric called the stability index typically favored clustering resultscontaining as few clusters as possible. The only method used for model selection thatconsistently suggested clustering algorithms producing nontrivial solutions was the CLOSEscore. The CLOSE score was specifically developed to evaluate clusters of time series bytaking both stability in time and the quality of the clusters into account. We use cluster visualizations to show the clusters. Scatter plots were produced by applyingdifferent methods of dimension reduction to the data, Principal Component Analysis (PCA) andt-Distributed Stochastic Neighbor Embedding (t-SNE). Additionally, we use cluster evolutionplots to display how the clusters evolve as different parts of the time series are used to performthe clustering thus emphasizing the temporal aspect of time series clustering. Finally, the resultsindicate that a manual qualitative analysis of the clustering results is necessary to finely tune thecandidate clustering methods. Performing this analysis highlights flaws of the other validationmethods, as well as allows the user to select the best method out of a few candidates based onthe use case and the reason for performing the clustering.
213

Unsupervised 3D Human Pose Estimation / Oövervakad mänsklig poseuppskattning i 3D

Budaraju, Sri Datta January 2021 (has links)
The thesis proposes an unsupervised representation learning method to predict 3D human pose from a 2D skeleton via a VAEGAN (Variational Autoencoder Generative Adversarial Network) hybrid network. The method learns to lift poses from 2D to 3D using selfsupervision and adversarial learning techniques. The method does not use images, heatmaps, 3D pose annotations, paired/unpaired 2Dto3D skeletons, 3D priors, synthetic 2D skeletons, multiview or temporal information in any shape or form. The 2D skeleton input is taken by a VAE that encodes it in a latent space and then decodes that latent representation to a 3D pose. The 3D pose is then reprojected to 2D for a constrained, selfsupervised optimization using the input 2D pose. Parallelly, the 3D pose is also randomly rotated and reprojected to 2D to generate a ’novel’ 2D view for unconstrained adversarial optimization using a discriminator network. The combination of the optimizations of the original and the novel 2D views of the predicted 3D pose results in a ’realistic’ 3D pose generation. The thesis shows that the encoding and decoding process of the VAE addresses the major challenge of erroneous and incomplete skeletons from 2D detection networks as inputs and that the variance of the VAE can be altered to get various plausible 3D poses for a given 2D input. Additionally, the latent representation could be used for crossmodal training and many downstream applications. The results on Human3.6M datasets outperform previous unsupervised approaches with less model complexity while addressing more hurdles in scaling the task to the real world. / Uppsatsen föreslår en oövervakad metod för representationslärande för att förutsäga en 3Dpose från ett 2D skelett med hjälp av ett VAE GAN (Variationellt Autoenkodande Generativt Adversariellt Nätverk) hybrid neuralt nätverk. Metoden lär sig att utvidga poser från 2D till 3D genom att använda självövervakning och adversariella inlärningstekniker. Metoden använder sig vare sig av bilder, värmekartor, 3D poseannotationer, parade/oparade 2D till 3D skelett, a priori information i 3D, syntetiska 2Dskelett, flera vyer, eller tidsinformation. 2Dskelettindata tas från ett VAE som kodar det i en latent rymd och sedan avkodar den latenta representationen till en 3Dpose. 3D posen är sedan återprojicerad till 2D för att genomgå begränsad, självövervakad optimering med hjälp av den tvådimensionella posen. Parallellt roteras dessutom 3Dposen slumpmässigt och återprojiceras till 2D för att generera en ny 2D vy för obegränsad adversariell optimering med hjälp av ett diskriminatornätverk. Kombinationen av optimeringarna av den ursprungliga och den nya 2Dvyn av den förutsagda 3Dposen resulterar i en realistisk 3Dposegenerering. Resultaten i uppsatsen visar att kodningsoch avkodningsprocessen av VAE adresserar utmaningen med felaktiga och ofullständiga skelett från 2D detekteringsnätverk som indata och att variansen av VAE kan modifieras för att få flera troliga 3D poser för givna 2D indata. Dessutom kan den latenta representationen användas för crossmodal träning och flera nedströmsapplikationer. Resultaten på datamängder från Human3.6M är bättre än tidigare oövervakade metoder med mindre modellkomplexitet samtidigt som de adresserar flera hinder för att skala upp uppgiften till verkliga tillämpningar.
214

Understanding people movement and detecting anomalies using probabilistic generative models / Att förstå personförflyttningar och upptäcka anomalier genom att använda probabilistiska generativa modeller

Hansson, Agnes January 2020 (has links)
As intelligent access solutions begin to dominate the world, the statistical learning methods to answer for the behavior of these needs attention, as there is no clear answer to how an algorithm could learn and predict exactly how people move. This project aims at investigating if, with the help of unsupervised learning methods, it is possible to distinguish anomalies from normal events in an access system, and if the most probable choice of cylinder to be unlocked by a user can be calculated.Given to do this is a data set of the previous events in an access system, together with the access configurations - and the algorithms that were used consisted of an auto-encoder and a probabilistic generative model.The auto-encoder managed to, with success, encode the high-dimensional data set into one of significantly lower dimension, and the probabilistic generative model, which was chosen to be a Gaussian mixture model, identified clusters in the data and assigned a measure of unexpectedness to the events.Lastly, the probabilistic generative model was used to compute the conditional probability of which the user, given all the details except which cylinder that was chosen during an event, would choose a certain cylinder. The result of this was a correct guess in 65.7 % of the cases, which can be seen as a satisfactory number for something originating from an unsupervised problem. / Allt eftersom att intelligenta åtkomstlösningar tar över i samhället, så är det nödvändigt att ägna de statistiska inlärnings-metoderna bakom dessa tillräckligt med uppmärksamhet, eftersom det inte finns något självklart svar på hur en algoritm ska kunna lära sig och förutspå människors exakta rörelsemönster.Det här projektet har som mål att, med hjälp av oövervakad inlärning, undersöka huruvida det är möjligt att urskilja anomalier från normala iakttagelser, och om den låscylinder med högst sannolikhet att en användare väljer att försöka låsa upp går att beräknda.Givet för att genomföra detta projekt är en datamängd där händelser från ett åtkomstsystem finns, tillsammans med tillhörande åtkomstkonfig-urationer. Algoritmerna som användes i projektet har bestått av en auto-encoder och en probabilistisk generativ modell.Auto-encodern lyckades, med tillfredsställande resultat, att koda det hög-dimensionella datat till ett annat med betydligt lägre dimension, och den probabilistiska generativa modellen, som valdes till en Gaussisk mixtur-modell, lyckades identifiera kluster i datat och med att tilldela varje observation ett mått på dess otrolighet.Till slut så användes den probabilistiska generativa modellen för att beräkna en villkorad sannolikhet, för vilken användaren, given alla attribut för en händelse utom just vilken låscylinder som denna försökte öppna, skulle välja.Resultatet av dessa var en korrekt gissning i 65,7 % av fallen, vilket kan ses som en tillfredställande siffra för något som härrör från ett oövervakat problem.
215

An Investigation and Comparison of Machine Learning Methods for Selecting Stressed Value-at-Risk Scenarios

Tennberg, Moa January 2023 (has links)
Stressed Value-at-Risk (VaR) is a statistic used to measure an entity's exposure to market risk by evaluating possible extreme portfolio losses. Stressed VaR scenarios can be used as a metric to describe the state of the financial market and can be used to detect and counter procyclicality by allowing central clearing counterparities (CCP) to increase margin requirements. This thesis aims to implement and evaluate machine learning methods (e.g., neural networks) for selecting stressed VaR scenarios in price return stock datasets where one liquidity day is assumed. The models are implemented to counter the procyclical effects present in NASDAQ's dual lambda method such that the selection maximises the total margin metric. Three machine learning models are implemented together with a labelling algorithm, a supervised and unsupervised multilayer perceptron and a random forest model. The labelling algorithm employs a deviation metric to differentiate between stressed VaR and standard scenarios. The models are trained and tested using 5000 scenarios of price return values from historical stock datasets. The models are tested using visual results, confusion matrix, Cohen's kappa statistic, the adjusted rand index and the total margin metric. The total margin metric is computed using normalised profit and loss values from artificially generated portfolios. The implemented machine learning models and the labelling algorithm manage to counter the procyclical effects evident in the dual lambda method and selected stressed VaR scenarios such that the selection maximise the total margin metric. The random forest model shows the most promise in classifying stressed VaR scenarios, since it manages to maximise the total margin overall.
216

[pt] MONITORAMENTO DE VIBRAÇÃO EM SISTEMAS MECÂNICOS USANDO APRENDIZADO PROFUNDO E RASO EM COMPUTADORES NA PONTA / [en] VIBRATION MONITORING OF MECHANICAL SYSTEMS USING DEEP AND SHALLOW LEARNING ON EDGE-COMPUTERS

CAROLINA DE OLIVEIRA CONTENTE 30 June 2022 (has links)
[pt] O monitoramento de integridade estrutural tem sido o foco de desenvolvimentos recentes no campo da avaliação baseada em vibração e, mais recentemente, no escopo da internet das coisas à medida que medição e computação se tornam distribuídas. Os dados se tornaram abundantes, embora a transmissão nem sempre seja viável em frequências mais altas especialmente em aplicações remotas. Portanto, é importante conceber fluxos de trabalho de modelo orientados por dados que garantam a melhor relação entre a precisão do modelo para avaliação de condição e os recursos computacionais necessários para soluções incorporadas, tópico que não tem sido amplamente utilizado no contexto de medições baseadas em vibração. Neste contexto, a presente pesquisa propõe abordagens para duas aplicações: na primeira foi proposto um fluxo de trabalho de modelagem capaz de reduzir a dimensão dos parâmetros de modelos autorregressivos usando análise de componentes principais e classificar esses dados usando algumas técnicas de aprendizado de máquina como regressão logística, máquina de vetor de suporte, árvores de decisão, k-vizinhos próximos e floresta aleatória. O exemplo do prédio de três andares foi usado para demonstrar a eficácia do método. No segundo caso, é utilizado um equipamento de teste composto por inércias rotativas onde a solução de monitoramento foi testada em uma plataforma baseada em GPU embarcada. Os modelos implementados para distinguir eficazmente os diferentes estados de atrito foram análise de componentes principais, deep autoencoders e redes neurais artificiais. Modelos rasos têm melhor desempenho em tempo de execução e precisão na detecção de condições de falha. / [en] Structural health monitoring has been the focus of recent developments in vibration-based assessment and, more recently, in the scope of the internet of things as measurement and computation become distributed. Data has become abundant even though the transmission is not always feasible, especially in remote applications. It is thus essential to devise data-driven model workflows that ensure the best compromise between model accuracy for condition assessment and the computational resources needed for embedded solutions. This topic has not been widely used in the context of vibration-based measurements. In this context, the present research proposes two approaches for two applications, a static and a rotating one. In case one, a modeling workflow capable of reducing the dimension of autoregressive model features using principal component analysis and classifying this data using some of the main machine learning techniques such as logistic regression, support vector machines, decision tree classifier, k-nearest neighborhood and random forest classifier was proposed. The three-story building example was used to demonstrate the method s effectiveness, together with ways to assess the best compromise between accuracy and model size. In case two, a test rig composed of rotating inertias and slender connecting rods is used, and the monitoring solution was tested in an embedded GPU-based platform. The models implemented to effectively distinguish between different friction states were principal component analysis, deep autoencoder and artificial neural networks. Shallow models perform better concerning running time and accuracy in detecting faulty conditions.
217

Unsupervised machine learning to detect patient subgroups in electronic health records / Identifiering av patientgrupper genom oövervakad maskininlärning av digitala patientjournaler

Lütz, Elin January 2019 (has links)
The use of Electronic Health Records (EHR) for reporting patient data has been widely adopted by healthcare providers. This data can encompass many forms of medical information such as disease symptoms, results from laboratory tests, ICD-10 classes and other information from patients. Structured EHR data is often high-dimensional and contain many missing values, which impose a complication to many computing problems. Detecting meaningful structures in EHR data could provide meaningful insights in diagnose detection and in development of medical decision support systems. In this work, a subset of EHR data from patient questionnaires is explored through two well-known clustering algorithms: K-Means and Agglomerative Hierarchical. The algorithms were tested on different types of data, primarily raw data and data where missing values have been imputed using different imputation techniques. The primary evaluation index for the clustering algorithms was the silhouette value using euclidean and cosine distance measures. The result showed that natural groupings most likely exist in the data set. Hierarchical clustering created higher quality clusters than k-means, and the cosine measure yielded a good interpretation of distance. The data imputation imposed large effects to the data and likewise to the clustering results, and other or more sophisticated techniques are needed for handling missing values in the data set. / Användandet av digitala journaler för att rapportera patientdata har ökat i takt med digitaliseringen av vården. Dessa data kan innehålla många typer av medicinsk information så som sjukdomssymptom, labbresultat, ICD-10 diagnoskoder och annan patientinformation. EHR data är vanligtvis högdimensionell och innehåller saknade värden, vilket kan leda till beräkningssvårigheter i ett digitalt format. Att upptäcka grupperingar i sådana patientdata kan ge värdefulla insikter inom diagnosprediktion och i utveckling av medicinska beslutsstöd. I detta arbete så undersöker vi en delmängd av digital patientdata som innehåller patientsvar på sjukdomsfrågor. Detta dataset undersöks genom att applicera två populära klustringsalgoritmer: k-means och agglomerativ hierarkisk klustring. Algoritmerna är ställda mot varandra och på olika typer av dataset, primärt rådata och två dataset där saknade värden har ersatts genom imputationstekniker. Det primära utvärderingsmåttet för klustringsalgoritmerna var silhuettvärdet tillsammans med beräknandet av ett euklidiskt distansmått och ett cosinusmått. Resultatet visar att naturliga grupperingar med stor sannolikhet finns att hitta i datasetet. Hierarkisk klustring visade på en högre klusterkvalitet än k-means, och cosinusmåttet var att föredra för detta dataset. Imputation av saknade data ledde till stora förändringar på datastrukturen och således på resultatet av klustringsexperimenten, vilket tyder på att andra och mer avancerade dataspecifika imputationstekniker är att föredra.
218

Text feature mining using pre-trained word embeddings

Sjökvist, Henrik January 2018 (has links)
This thesis explores a machine learning task where the data contains not only numerical features but also free-text features. In order to employ a supervised classifier and make predictions, the free-text features must be converted into numerical features.  In this thesis, an algorithm is developed to perform that conversion. The algorithm uses a pre-trained word embedding model which maps each word to a vector. The vectors for multiple word embeddings belonging to the same sentence are then combined to form a single sentence embedding. The sentence embeddings for the whole dataset are clustered to identify distinct groups of free-text strings. The cluster labels are output as the numerical features. The algorithm is applied on a specific case concerning operational risk control in banking. The data consists of modifications made to trades in financial instruments. Each such modification comes with a short text string which documents the modification, a trader comment. Converting these strings to numerical trader comment features is the objective of the case study. A classifier is trained and used as an evaluation tool for the trader comment features. The performance of the classifier is measured with and without the trader comment feature. Multiple models for generating the features are evaluated. All models lead to an improvement in classification rate over not using a trader comment feature. The best performance is achieved with a model where the sentence embeddings are generated using the SIF weighting scheme and then clustered using the DBSCAN algorithm. / Detta examensarbete behandlar ett maskininlärningsproblem där data innehåller fritext utöver numeriska attribut. För att kunna använda all data för övervakat lärande måste fritexten omvandlas till numeriska värden. En algoritm utvecklas i detta arbete för att utföra den omvandlingen. Algoritmen använder färdigtränade ordvektormodeller som omvandlar varje ord till en vektor. Vektorerna för flera ord i samma mening kan sedan kombineras till en meningsvektor. Meningsvektorerna i hela datamängden klustras sedan för att identifiera grupper av liknande textsträngar. Algoritmens utdata är varje datapunkts klustertillhörighet. Algoritmen appliceras på ett specifikt fall som berör operativ risk inom banksektorn. Data består av modifikationer av finansiella transaktioner. Varje sådan modifikation har en tillhörande textkommentar som beskriver modifikationen, en handlarkommentar. Att omvandla dessa kommentarer till numeriska värden är målet med fallstudien. En klassificeringsmodell tränas och används för att utvärdera de numeriska värdena från handlarkommentarerna. Klassificeringssäkerheten mäts med och utan de numeriska värdena. Olika modeller för att generera värdena från handlarkommentarerna utvärderas. Samtliga modeller leder till en förbättring i klassificering över att inte använda handlarkommentarerna. Den bästa klassificeringssäkerheten uppnås med en modell där meningsvektorerna genereras med hjälp av SIF-viktning och sedan klustras med hjälp av DBSCAN-algoritmen.
219

Deinterleaving of radar pulses with batch processing to utilize parallelism / Gruppering av radar pulser med batch-bearbetning för att utnyttja parallelism

Lind, Emma, Stahre, Mattias January 2020 (has links)
The threat level (specifically in this thesis, for aircraft) in an environment can be determined by analyzing radar signals. This task is critical and has to be solved fast and with high accuracy. The received electromagnetic pulses have to be identified in order to classify a radar emitter. Usually, there are several emitters transmitting radar pulses at the same time in an environment. These pulses need to be sorted into groups, where each group contains pulses from the same emitter. This thesis aims to find a fast and accurate solution to sort the pulses in parallel. The selected approach analyzes batches of pulses in parallel to exploit the advantages of a multi-threaded Central Processing Unit (CPU) or a Graphics Processing Unit (GPU). Firstly, a suitable clustering algorithm had to be selected. Secondly, an optimal batch size had to be determined to achieve high clustering performance and to rapidly process the batches of pulses in parallel. A quantitative method based on experiments was used to measure clustering performance, execution time, system response, and parallelism as a function of batch sizes when using the selected clustering algorithm. The algorithm selected for clustering the data was Density-based Spatial Clustering of Applications with Noise (DBSCAN) because of its advantages, such as not having to specify the number of clusters in advance, its ability to find arbitrary shapes of a cluster in a data set, and its low time complexity. The evaluation showed that implementing parallel batch processing is possible while still achieving high clustering performance, compared to a sequential implementation that used the maximum likelihood method.An optimal batch size in terms of data points and cutoff time is hard to determine since the batch size is very dependent on the input data. Therefore, one batch size might not be optimal in terms of clustering performance and system response for all streams of data. A solution could be to determine optimal batch sizes in advance for different streams of data, then adapt a batch size depending on the stream of data. However, with a high level of parallelism, an additional delay is introduced that depends on the difference between the time it takes to collect data points into a batch and the time it takes to process the batch, thus the system will be slower to output its result for a given batch compared to a sequential system. For a time-critical system, a high level of parallelism might be unsuitable since it leads to slower response times. / Genom analysering av radarsignaler i en miljö kan hotnivån bestämmas. Detta är en kritisk uppgift som måste lösas snabbt och med bra noggrannhet. För att kunna klassificera en specifik radar måste de elektromagnetiska pulserna identifieras. Vanligtvis sänder flera emittrar ut radarpulser samtidigt i en miljö. Dessa pulser måste sorteras i grupper, där varje grupp innehåller pulser från en och samma emitter. Målet med denna avhandling är att ta fram ett sätt att snabbt och korrekt sortera dessa pulser parallellt. Den valda metoden använder grupper av data som analyserades parallellt för att nyttja fördelar med en multitrådad Central Processing Unit (CPU) eller en Central Processing Unit (CPU) or a Graphics Processing Unit (GPU). Först behövde en klustringsalgoritm väljas och därefter en optimal gruppstorlek för den valda algoritmen. Gruppstorleken baserades på att grupperna kunde behandlas parallellt och snabbt, samt uppnå tillförlitlig klustring. En kvantitativ metod användes som baserades på experiment genom att mäta klustringens tillförlitlighet, exekveringstid, systemets svarstid och parallellitet som en funktion av gruppstorlek med avseende på den valda klustringsalgoritmen. Density-based Spatial Clustering of Applications with Noise (DBSCAN) valdes som algoritm på grund av dess förmåga att hitta kluster av olika former och storlekar utan att på förhand ange antalet kluster för en mängd datapunkter, samt dess låga tidskomplexitet. Resultaten från utvärderingen visade att det är möjligt att implementera ett system med grupper av pulser och uppnå bra och tillförlitlig klustring i jämförelse med en sekventiell implementation av maximum likelihood-metoden. En optimal gruppstorlek i antal datapunkter och cutoff tid är svårt att definiera då storleken är väldigt beroende på indata. Det vill säga, en gruppstorlek måste inte nödvändigtvis vara optimal för alla typer av indataströmmar i form av tillförlitlig klustring och svarstid för systemet. En lösning skulle vara att definiera optimala gruppstorlekar i förväg för olika indataströmmar, för att sedan kunna anpassa gruppstorleken efter indataströmmen. Det uppstår en fördröjning i systemet som är beroende av differensen mellan tiden det tar att skapa en grupp och exekveringstiden för att bearbeta en grupp. Denna fördröjning innebär att en parallell grupp-implementation aldrig kommer kunna vara lika snabb på att producera sin utdata som en sekventiell implementation. Detta betyder att det i ett tidskritiskt system förmodligen inte är optimalt att parallellisera mycket eftersom det leder till långsammare svarstid för systemet.
220

Clustering and forecasting for rain attenuation time series data

Li, Jing January 2017 (has links)
Clustering is one of unsupervised learning algorithm to group similar objects into the same cluster and the objects in the same cluster are more similar to each other than those in the other clusters. Forecasting is making prediction based on the past data and efficient artificial intelligence models to predict data developing tendency, which can help to make appropriate decisions ahead. The datasets used in this thesis are the signal attenuation time series data from the microwave networks. Microwave networks are communication systems to transmit information between two fixed locations on the earth. They can support increasing capacity demands of mobile networks and play an important role in next generation wireless communication technology. But inherent vulnerability to random fluctuation such as rainfall will cause significant network performance degradation. In this thesis, K-means, Fuzzy c-means and 2-state Hidden Markov Model are used to develop one step and two step rain attenuation data clustering models. The forecasting models are designed based on k-nearest neighbor method and implemented with linear regression to predict the real-time rain attenuation in order to help microwave transport networks mitigate rain impact, make proper decisions ahead of time and improve the general performance. / Clustering is een van de unsupervised learning algorithmen om groep soortgelijke objecten in dezelfde cluster en de objecten in dezelfde cluster zijn meer vergelijkbaar met elkaar dan die in de andere clusters. Prognoser är att göra förutspårningar baserade på övergående data och effektiva artificiella intelligensmodeller för att förutspå datautveckling, som kan hjälpa till att fatta lämpliga beslut. Dataseten som används i denna avhandling är signaldämpningstidsseriedata från mikrovågsnätverket. Mikrovågsnät är kommunikationssystem för att överföra information mellan två fasta platser på jorden. De kan stödja ökade kapacitetsbehov i mobilnät och spela en viktig roll i nästa generationens trådlösa kommunikationsteknik. Men inneboende sårbarhet för slumpmässig fluktuering som nedbörd kommer att orsaka betydande nätverksförstöring. I den här avhandlingen används K-medel, Fuzzy c-medel och 2-state Hidden Markov Model för att utveckla ett steg och tvåstegs regen dämpning dataklyvningsmodeller. Prognosmodellerna är utformade utifrån k-närmaste granne-metoden och implementeras med linjär regression för att förutsäga realtidsdämpning för att hjälpa mikrovågstransportnät att mildra regnpåverkan, göra rätt beslut före tid och förbättra den allmänna prestandan.

Page generated in 0.0952 seconds