• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 32
  • 19
  • 14
  • 6
  • 1
  • Tagged with
  • 105
  • 72
  • 54
  • 29
  • 29
  • 29
  • 17
  • 15
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Zur Aufnahme und Bindung von Uran(VI) durch die Grünalge Chlorella vulgaris

Vogel, Manja 15 June 2011 (has links)
Uran kann sowohl durch geogene als auch anthropogene Vorgänge in die Umwelt gelangen. Dazu zählen natürliche Uranerzvorkommen und deren Leaching sowie die Auswaschung von Uran aus den Hinterlassenschaften des ehemaligen Uranerzbergbaus. Die Aufklärung des Verhaltens von Uran in der Geo- und Biosphäre ist für eine Risikoabschätzung des Migrationsverhaltens von Radionukliden in der Umwelt notwendig. Algen sind in der Natur weit verbreitet und die wichtigste Organismengruppe in den aquatischen Lebensräumen. Durch ihre ubiquitäre Verbreitung in der Natur ist ihr Einfluss auf das Migrationsverhalten von Uran in der Umwelt von grundlegendem Interesse z.B. um effektive und wirtschaftliche Remediationsstrategien für Wässer zu entwickeln. Außerdem stehen Algen am Beginn der Nahrungskette und spielen eine wirtschaftlich relevante Rolle als Nahrung beziehungsweise Nahrungsergänzungsmittel. Die Möglichkeit des Transfers von algengebundenem Uran entlang der Nahrungskette könnte eine ernsthafte Gesundheitsgefahr für den Menschen darstellen. Das Ziel dieser Arbeit war die quantitative und strukturelle Charakterisierung der Wechselwirkung zwischen Uran(VI) und der Grünalge Chlorella vulgaris im umweltrelevanten Konzentrations- und pH-Wertbereich unter besonderer Berücksichtigung der Stoffwechselaktivität. Die in dieser Arbeit erzielten Ergebnisse der Sorptionsexperimente zeigen deutlich den maßgeblichen Einfluss des Stoffwechselstatus von Chlorella auf die Wechselwirkung mit Uran. So kann in Gegenwart von umweltrelevanten Urankonzentrationen eine Remobilisierung von zuvor passiv gebundenem Uran durch die stoffwechselaktiven Algen erfolgen. Die in Abhängigkeit von der Stoffwechselaktivität, der Urankonzentration und dem pH-Wert mit den Algenzellen gebildeten Uran(VI)-Komplexe wurden strukturell mit Hilfe der spektroskopischen Methoden TRLF-, EXAFS- und ATR-FTIR-Spektroskopie charakterisiert. Mittels TEM konnte Uran in Form von 30-70 nm großen nadelförmigen Ablagerungen in der Zellwand der lebende Algenzellen nachgewiesen werden. Die in dieser Arbeit erhaltenen Ergebnisse leisten einen wichtigen Beitrag zur Vorhersage des Migrationsverhaltens von Uran unter umweltrelevanten Bedingungen und der radiologischen Risikobewertung von geogen und anthropogen auftretendem Uran. / Uranium could be released into the environment from geogenic deposits and from former mining and milling areas by weathering and anthropogenic activities. The elucidation of uranium behavior in geo- and biosphere is necessary for a reliable risk assessment of radionuclide migration in the environment. Algae are widespread in nature and the most important group of organisms in the aquatic habitat. Because of their ubiquitous occurrence in nature the influence of algae on the migration process of uranium in the environment is of fundamental interest e.g. for the development of effective and economical remediation strategies for contaminated waters. Besides, algae are standing at the beginning of the food chain and play an economically relevant role as food and food additive. Therefore the transfer of algae-bound uranium along the food chain could arise to a serious threat to human health. Aim of this work was the quantitative and structural characterization of the interaction between U(VI) and the green alga Chlorella vulgaris in environmental relevant concentration and pH range with special emphasis on metabolic activity. The obtained findings of the sorption experiments in this study demonstrate clearly, the interactions with uranium are heavily influenced by the status of the investigated Chlorella cells. So in presence of environmentally relevant uranium concentrations a remobilization of algal-bound uranium by metabolically active algae occurred. The U(VI)-algae-complexes formed in dependence of cell activity, uranium concentration and pH value were structural characterized by TRLF, EXAFS and ATR-FTIR spectroscopy. With the help of TEM under the given experimental conditions uranium was detected in form of 30-70 nm needle-like deposites in the cell wall of living algae. The obtained results of this study contribute to the prediction of the migration behavior of uranium under environmental conditions, the radiological risk assessment of geogenic and anthropogenic appearing uranium and a reliable estimation of the accumulation of uranium in the food chain.
92

NMR Spectroscopic Investigation of Lanthanide, Actinide, and Selenium Containing Complexes Related to the Environment or Nuclear Waste Disposals

Kretzschmar, Jerome 27 May 2019 (has links)
The ultimate goal of this work is providing insights into fundamental (physico-) chemical (redox) behavior of hexavalent uranium (U(VI)), trivalent europium (Eu(III)) and selenium (Se), and upon their interaction with ubiquitous small biomolecules (in case of U(VI) and Eu(III)) or alkaline earth metal ions (in case of Se(IV) and Se(VI)) by application of Nuclear Magnetic Resonance (NMR) spectroscopy. NMR spectroscopy is a powerful method proving its usefulness also to environmental and nuclear waste related studies in aqueous solutions by determination of (potential) binding sites, molecular structures (even conformation and configuration) as well as intra- and intermolecular dynamics, (redox) reaction pathways and mechanisms. The present work comprises extensive NMR spectroscopic investigations in aqueous (D2O) solutions on (i) glutathione (GSH) and glutathione disulfide (GSSG) interactions with trivalent lanthanides (Ln(III), particularly Eu(III)) and U(VI), (ii) molecular structures of citrate (Cit) complexes of U(VI), and their reactions upon light-irradiation, as well as (iii) pH- and temperature-dependent speciation of selenium oxyanions, i.e., Se(VI) (selenate) and Se(IV) (selenite and, notably, hydrogen selenite) as well as Se(VI) and Se(IV) interaction with alkaline earth metal ions. These investigations are supported by time-resolved laser-induced fluorescence spectroscopy (TRLFS), ultraviolet-visible-near infrared (UV-Vis-NIR), IR/Raman, and extended X-ray absorption fine structure (EXAFS) spectroscopy, transmission electron microscopy (TEM), as well as quantum chemical calculations on density functional theory (DFT) level. For NMR spectroscopic data on GSH/GSSG complexation towards both Eu(III) and U(VI) are lacking, the herein presented results are new, and nicely complement other spectroscopic studies. Ln(III) complexes of GSH are characterized by their high solubility at least up to 300 mM and pD 5. However, the formation constant of the Eu(III)–GSH 1:1 complex is quite low with log K = 1.71 ± 0.01 as determined by Eu(III)-TRLFS. The diamagnetic La(III) and Lu(III) showed only little effect on the NMR spectra (< 2 ppm) while analogous Eu(III) solutions revealed hyperfine shifts up to 40 ppm. Eu(III)-induced 1H chemical shift changes are solely upfield and attributed to be predominantly due to pseudocontact contribution caused by dipolar interaction. In contrast, Eu(III)-induced 13C chemical shift changes of adjacent atoms – at least for the carboxyl and α-carbons – show alternating signs, indicating spin polarization effects owing to contact contribution. As expected for hard LEWIS acids and shown by other spectroscopies, complexation facilitates by the carboxyl groups. Qualitative differences between the glutamyl and glycyl carboxylate in metal ion complexation are ascribed to COULOMB repulsion due to the positively charged NH3+ in direct vicinity. Investigations of the U(VI)–GSH system covered experiments under both oxidizing and reducing conditions, performed with GSH’s oxidized form, GSSG, at ambient conditions, while samples with reduced GSH were handled under N2 atmosphere. For either condition, U(VI) showed interaction in aqueous (D2O) solution with both GSH and GSSG as determined by U(VI)-induced 1H and 13C chemical shift changes and U(VI) TRLFS, the latter comprising measurements at 25 °C and –120 °C. In principle, the interactions are stronger as compared to the Ln(III) system, and the speciation in both solution and solid is more complex owing to the aqueous chemistry of uranium. Observed binary GSH complexes are [UO2(H2GSH)]2+ for pD values up to ≈ 2.3, and [UO2(HGSH)]+ predominating for pD > 2.3. Complementary to the Eu(III) results, whenever net neutral binary GSH/GSSG or ternary hydroxo GSH/GSSG U(VI) complexes form in solution, both these U(VI) systems revealed extensive precipitation because of the low solubility of these complexes. Binary U(VI) GSSG and ternary U(VI) hydroxo GSSG complexes yield solid phases from pD 2 through 8, even in carbonatic media. The largest quantities of aqueous GSSG–U(VI) complexes are observed for pD ≈ 3.5, with the association constant for pH 3 determined by TRLFS as log K = 4.81 ± 0.08 for a 1:1 complex. GSH cannot compete with hydroxo ligands for complexation as of pD 6, whereas GSSG can at least partially compete with hydroxo and carbonate ligands upon formation of both quaternary U(VI) hydroxo carbonate GSSG, and ternary U(VI) carbonate GSSG (poly-)anionic species of high solubility. Under reducing and near-neutral conditions (pD 6 – 9) GSH immediately reduced U(VI) with subsequent formation of nanocrystalline UO2+x. After centrifugation of the starting material and allowing the decanted supernatant to age, the dissolved nanocrystals assemble network-like as disclosed by TEM, and further analysed by selected-area electron diffraction (SAED), energy-dispersive X-ray (EDX) and UV-Vis spectroscopy, revealing hyper-stoichiometric UO2+x phases. Such network-like assembled actinide containing nanocrystals, with the arrangement most likely provoked by the presence of GSSG, have never been shown before. Complementary, the precipitate that has also been allowed to age as a wet paste, showed color changes from yellow via olive to black, indicating a reaction to proceed. The repeatedly probed and dissolved material exhibited GSSG in NMR spectra, and UV-Vis-NIR absorption bands attributed to U(IV) and, notably, U(V), the latter implying a one-electron transfer with subsequent disproportionation of U(V) to U(IV) and U(VI). Therefore, obtained results advance the understanding of both fundamental redox behavior of uranium and the role of GSH (and related molecules) in U(VI) detoxification processes in vivo. Although investigated for over 70 years, there are still controversial discussions on both speciation and structures of U(VI)–Cit complexes. By means of NMR’s strength in both structure determination and sensitivity to dynamic processes, studies regarding the U(VI)–Cit system allowed further fundamental insights into the structures of the formed complexes on a molecular level. Upon complexation a chiral center is induced in Cit’s central carbon, resulting in the formation of two diastereomeric pairs of enantiomers, whereupon the dimeric complexes exhibit syn and anti configured isomers. In fact, the combination of 17O NMR (note: at natural abundance) and quantum chemical calculations allowed an unambiguous decision on complex geometry and overall configurations. It is evidenced for the first time that the syn isomer is favored in aqueous solution in contrast to the preferably crystallizing anti isomer. Both isomers coexist and interconvert among one another, with a rate estimated to be in the order of 102 s–1 at 25 °C in acidic media, and a corresponding activation energy of approximately 60 kJ mol–1. Moreover, clear indications for uranium chirality is observed for U4+, with the 1:1 U(IV)–Cit complexes also forming two diastereomeric pairs of enantiomers. Comprehensive spectroscopic experiments combined with quantum chemical calculations improved basic understanding of the photo-reaction mechanism in the U(VI)–Cit system. Regardless of sample conditions, Cit is degraded to β-ketoglutarate, acetoacetate, and acetone, while U(VI) was reduced to U(IV) at pD 2 and U(V) at pD 5, suggesting a two- and a one-electron transfer, respectively. NMR signals observed for pD 5 samples at remarkable 1H chemical shift values between 25 and 53 ppm, in combination with UV-Vis-NIR absorptions at about 750 and 930 nm, are assigned to U(V) complexes of citrate. With regard to reported pH dependence on reaction rate and yield in the literature combined with observations in this work, H+/D+ are considered mechanistically crucial constituents. Furthermore, the photoreaction proceeds intermolecularly, requiring for free Cit to be present in solution. In consideration of both the U(VI)–Cit photoreaction and the U(VI)–GSH chemical redox reaction, regardless of the particular mechanism, in both cases the process is intermolecular. This is not only a highly interesting, but the more a very important result, rendering the reductants not required to be bound to U(VI) in order to reduce it. Owing to the suitability of 77Se as NMR-active but non-radioactive Se isotope, this spectroscopy was also applied to study chemical behavior of the nuclear waste related long-lived 79Se. For the first time spectroscopic evidence is given for hydrogen selenite dimerization in aqueous solution upon formation of homo-dimers by hydrogen bonding that are stable up to 60 °C and so are other selenium oxyanionic species. Additionally, a remarkably higher 77Se chemical shift temperature coefficient of the dimer – as compared to corresponding selenite and selenous acid – was found. These findings are attributed to a significant deshielding upon heating due to remarkably different rovibrational modes upon stretching the dimer as a whole instead of its dissociation into monomers owing to the rather strong hydrogen bonds. Interaction of selenium oxyanions with ubiquitous alkaline earth metals, i.e., Ca2+ and Mg2+, showed formation of weak aqueous complexes of both selenite and hydrogen selenite dimer for excessive selenium, however, at high ionic strength (5.6 M) for equimolar Ca2+ and Se(IV) even at pHc 5 crystalline calcium selenite is formed.
93

The ternary system U(VI) / humic acid / Opalinus Clay

Joseph, Claudia 23 July 2013 (has links)
The storage of nuclear waste in deep geological formations is discussed worldwide as the main strategy for nuclear waste management. To ensure the confinement of the nuclear waste, a multiple barrier system which consists of engineered, geo-engineered, and geological barriers will be applied. Thereby, in Germany the definition of the isolating rock zone represents an important safety function indicator. Clay rock is internationally investigated as potential host rock for a repository and represents a part of the geological barrier. In the present work, the natural clay rock Opalinus Clay from the Mont Terri rock laboratory, Switzerland, was studied. In Germany, the direct disposal of the spent nuclear fuel without the reprocessing of the spent fuel is preferred. In case of water ingress, radionuclides can be released from the nuclear waste repository into its surroundings, namely the host rock of the repository. Humic acids, ubiquitous in nature, can be found associated with the inorganic components in natural clay rock (1.5×10–3 wt.% in Opalinus Clay). They can be released under certain conditions. Due to their variety of functional groups, humic acids are very strong complexing agents for metal ions. They have inherent redox abilities and a colloidal conformation in solution. Because of these characteristics, humic acids can affect the mobility of metal ions such as actinides. Furthermore, in the near-field of a repository elevated temperatures have to be considered due to the heat production resulting from the radioactive decay of the various radionuclides in the nuclear waste. This work focuses on the interaction of uranium, as main component of spent nuclear fuel, with Opalinus Clay and studies the influence of humic acid and elevated temperature on this interaction. For investigation of the retention behavior of the clay and the mobility of U(VI) in the system, batch sorption and diffusion experiments were performed. To clarify which U(VI) and humic acid species were present under the applied conditions, aqueous speciation modeling was used. Additionally, the U(VI) speciation in solution and on the clay surface was investigated by spectroscopic methods. Prior to the investigation of the ternary system U(VI) / humic acid / clay, the applied batches of Opalinus Clay were characterized (e.g., specific surface area, carbon content, cation exchange capacity, elemental composition, particle size distribution). Leaching studies with Opalinus Clay in synthetic Opalinus Clay pore water (pH 7.6, It = 0.34 mol/L) and in NaClO4 (pH 3 – 10, I = 0.1 mol/L) were performed to identify the competing ions and their concentrations in the background electrolytes. These data were used to calculate the U(VI) and humic acid speciation in solution. Calcium and carbonate ions are present under pore water conditions as well as in 0.1 mol/L NaClO4 from pH 7 to 8.5, due to dissolution of calcite (mineral fraction in Opalinus Clay). Thus, the U(VI) speciation is dominated by the aquatic Ca2UO2(CO3)3 complex. In the case of pore water, Ca2UO2(CO3)3(aq) is also the dominant U(VI) species in the presence of humic acid, which was corroborated by time-resolved laser-induced fluorescence spectroscopic measurements. A significantly changed speciation was found in 0.1 mol/L NaClO4 in the presence of humic acid. At pH > 7, the negatively charged UO2(CO3)2HA(II)4– complex determines the U(VI) speciation, thus repressing the Ca2UO2(CO3)3(aq) complex. In addition, the speciation of humic acid is influenced from ions leached out from Opalinus Clay. The CaHA(II) complex is the dominating humic acid species in solution. Batch sorption experiments in 0.1 mol/L NaClO4 showed that Opalinus Clay has the strongest retardation effect on U(VI) in the pH range from pH 4.5 to 7. However, under environmentally relevant conditions (pH > 7), the sorption of U(VI) onto Opalinus Clay is very weak. Under pore water conditions, a distribution coefficient (Kd) of 0.0222 ± 0.0004 m3/kg was determined, which was shown to be independent of solid-to-liquid ratios ≥ 60 g/L. In addition, in pore water, the U(VI) sorption onto Opalinus Clay is not influenced by humic acid, which is supported by the speciation results. Extended X ray absorption fine-structure investigations confirmed this batch sorption result. The U(VI) diffusion experiments performed in pore water at 25 °C with Opalinus Clay bore core samples confirmed the Kd value obtained by batch sorption experiments. In the diffusion experiments at 60 °C, a change in the U(VI) speciation occurred. Beside Ca2UO2(CO3)3(aq), a colloidal U(VI) species was formed. Almost equivalent apparent diffusion coefficient (Da) values were determined for the diffusion of the aqueous U(VI) species at 25 and 60 °C through Opalinus Clay. Thus, based on the investigations in the present study the breakthrough of U(VI) through Opalinus Clay is expected to be independent of the temperature and should occur nearly at the same time. Modeling calculations showed that it would take about 10 years until a detectable amount of 233U(VI) (1×10–9 mol/L) migrates through an 11 mm thick Opalinus Clay sample. Two distinct humic acid size fractions – a large- and a small-sized colloid fraction – diffused through the Opalinus Clay samples. Within three months, the high molecular size humic acid colloids migrated only about 500 µm into the clay, whereas the low molecular size fraction diffused through the entire Opalinus Clay samples and were consequently detected in the receiving reservoirs. These findings demonstrate a filtration effect of the compacted clay. The diffusion experiments revealed that the effect of humic acid on U(VI) diffusion is negligible and, under the studied conditions, independent of temperature. The obtained results contribute to data bases used for modeling of interaction and migration processes in uranium / clay rock systems. Thus, the collected sorption and diffusion data are not only relevant for safety assessment of nuclear waste repositories but also for any clay-containing system present in the environment, where the geochemical interaction with uranium contaminated water plays a role. Concerning the suitability of Opalinus Clay as host rock for a nuclear waste repository, it can be concluded, that Opalinus Clay has a relatively high retardation potential for U(VI). In case of water ingress U(VI) as part of the nuclear waste is released into the clay formation. Under near-neutral pH conditions, it will be complexed by calcium and carbonate ions leached out from Opalinus Clay, whereby Ca2UO2(CO3)3(aq) is formed. This complex is only weakly retarded by sorption onto the clay, which can contribute to an enhanced mobility of U(VI) in the host rock. However, the U(VI) migration through the clay rock is governed by molecular diffusion. This decelerates the migration of Ca2UO2(CO3)3(aq) through Opalinus Clay and thus it represents the decisive retardation process in the investigated system. Additionally, under environmentally relevant conditions, humic acid has no significant influence on U(VI) / Opalinus Clay interaction even at an elevated temperature of 60 °C. This was shown by speciation, sorption, as well as diffusion experiments. / Eine weltweit diskutierte Strategie zum Umgang mit radioaktiven Abfällen ist deren Endlagerung in tiefen geologischen Formationen. Zur Abschirmung der Umwelt vor den schädlichen Einflüssen des radioaktiven Abfalls soll ein Multibarrierensystem bestehend aus technischen, geotechnischen und geologischen Barrieren im Endlager dienen. Dabei ist in Deutschland die Definition des einschlusswirksamen Gebirgsbereichs ein wichtiger sicherheitstechnischer Indikator. Tongestein wird als potentielles Endlagerwirtsgestein und Teil der geologischen Barriere international erforscht. In der vorliegenden Arbeit wurde das natürliche Tongestein Opalinuston aus dem Mont Terri Felslabor, Schweiz, untersucht. In Deutschland wird die direkte Endlagerung des abgebrannten Kernbrennstoffes ohne Wiederaufarbeitung des Brennstoffs favorisiert. Bei Wassereinbruch können Radionuklide aus dem Abfall in die Umgebung des Endlagers freigesetzt werden, d. h. sie können in Kontakt mit dem Wirtsgestein kommen. Ubiquitär in der Natur vorkommende Huminsäuren können mit den anorganischen Komponenten des natürlichen Tongesteins vergesellschaftet sein (1.5×10–3 Gew.-% in Opalinuston). Unter bestimmten Bedingungen können die Huminsäuren freigesetzt werden. Ihre Struktur enthält eine Vielzahl von funktionellen Gruppen, was sie zu starken Komplexbildnern für Metallionen macht. Sie besitzen Redoxeigenschaften und bilden in Lösung eine kolloidale Konformation aus. Aufgrund dieser Charakteristika können sie die Mobilität von Metallionen wie den Actinoiden beeinflussen. Weiterhin sind im Nahfeld eines Endlagers erhöhte Temperaturen zu erwarten, welche aus der Wärmefreisetzung beim radioaktiven Zerfall der verschiedenen Radionuklide im radioaktiven Abfall resultieren. Die vorliegende Studie konzentriert sich auf die Untersuchung der Wechselwirkung von Uran, als Hauptkomponente des endgelagerten abgebrannten Kernbrennstoffs, mit Opalinuston und untersucht dabei den Einfluss von Huminsäure und erhöhter Temperatur. Um das Rückhaltevermögen des Tongesteins gegenüber U(VI) und die U(VI)-Mobilität im System zu ermitteln, wurden Sorptions- und Diffusionsversuche durchgeführt. Zur Klärung, welche U(VI)- und Huminsäurespezies unter den untersuchten Bedingungen vorliegen, wurde die aquatische Speziation berechnet. Zusätzlich wurde die U(VI)-Speziation in Lösung und an der Tonoberfläche mit spektroskopischen Methoden untersucht. Vor der Untersuchung des ternären Systems U(VI) / Huminsäure / Ton wurden die eingesetzten Opalinuston-Chargen charakterisiert (z. B. spezifische Oberfläche, Kohlenstoffgehalt, Kationenaustauschkapazität, elementare Zusammensetzung, Partikelgrößenverteilung). Anschließend wurden Auslaugungsversuche mit Opalinuston in synthetischem Opalinustonporenwasser (pH 7.6, It = 0.34 mol/L) und in NaClO4 (pH 3 – 10, I = 0.1 mol/L) durchgeführt, um relevante Konkurrenzionen zu identifizieren und deren Konzentration in den Hintergrundelektrolyten zu bestimmen. Die erhaltenen Daten wurden zur Berechnung der U(VI)- und Huminsäurespeziation in Lösung verwendet. Unter Porenwasserbedingungen sowie in 0.1 mol/L NaClO4 von pH 7 bis 8.5 liegen, durch die Auflösung von Calcit (Mineralphase im Opalinuston), Calcium- und Carbonationen in Lösung vor. Dadurch wird die U(VI)-Speziation von dem aquatischen Ca2UO2(CO3)3-Komplex dominiert. Im Falle des Porenwassers ist Ca2UO2(CO3)3(aq) auch in Gegenwart von Huminsäure die dominierende U(VI)-Spezies. Dies wurde durch zeitaufgelöste laserinduzierte fluoreszenzspektroskopische Messungen nachgewiesen. Eine signifikante Änderung der U(VI)-Speziation tritt in 0.1 mol/L NaClO4 in Gegenwart von Huminsäure auf. Bei pH > 7 bestimmt der negativ geladene UO2(CO3)2HA(II)4–-Komplex die U(VI)-Speziation, wobei der Anteil von Ca2UO2(CO3)3(aq) zurückgedrängt wird. Auch die Huminsäurespeziation wird durch die vom Opalinuston ausgelaugten Ionen beeinflusst. So ist der CaHA(II)-Komplex die dominierende Huminsäurespezies in Lösung. Sorptionsversuche in 0.1 mol/L NaClO4 zeigten, dass Opalinuston gegenüber U(VI) den stärksten Retardationseffekt im pH-Bereich 4.5 bis 7 aufweist. Unter umweltrelevanten Bedingungen hingegen (pH > 7) ist die U(VI)-Sorption an Opalinuston sehr schwach. Unter Porenwasserbedingungen wurde ein Verteilungskoeffizient (Kd) von 0.0222 ± 0.0004 m3/kg ermittelt, der von Fest-Flüssig-Verhältnissen ≥ 60 g/L unabhängig ist. Außerdem wird die U(VI)-Sorption an Opalinuston in Porenwasser nicht von Huminsäure beeinflusst. Dies wird durch die Ergebnisse aus den Speziations-rechnungen unterstützt. Röntgenabsorptionsspektroskopische Untersuchungen bestätigten ebenfalls dieses Sorptionsergebnis. Die U(VI)-Diffusionsexperimente in Porenwasser bei 25 °C unter Verwendung von Opalinustonbohrkernstücken bestätigten den Kd-Wert der Sorptionsexperimente. In den Diffusionsexperimenten bei 60 °C trat eine Änderung in der U(VI)-Speziation auf. Neben Ca2UO2(CO3)3(aq) wurde eine kolloidale U(VI)-Spezies gebildet. Für die Diffusion der aquatischen U(VI)-Spezies durch Opalinuston bei 25 und 60 °C wurden annähernd gleiche scheinbare (apparente) Diffusionskoeffizienten (Da) bestimmt. Das bedeutet, der Durchbruch von U(VI) durch Opalinuston ist unabhängig von den hier untersuchten Temperaturen und wird deshalb etwa zum gleichen Zeitpunkt erwartet. Modellierungen zeigten, dass es etwa zehn Jahre dauern würde, bis eine detektierbare Menge an 233U(VI) (1×10–9 mol/L) durch ein 11 mm-dickes Opalinustonbohrkernstück migrieren würde. Zwei verschiedene Huminsäuregrößenfraktionen diffundierten durch die Opalinustonproben – eine große und eine kleine kolloidale Größenfraktion. Innerhalb von drei Monaten migrierten die hochmolekularen Huminsäurekolloide nur 500 µm in den Ton, während die niedermolekularen Huminsäurekolloide durch die gesamten Opalinustonproben diffundierten und dadurch im Auffangreservoir detektiert werden konnten. Diese Resultate demonstrieren den Filtrationseffekt des Tongesteins. Die Diffusionsversuche zeigten, dass der Einfluss von Huminsäure auf die U(VI)-Diffusion, unabhängig von der in dieser Arbeit verwendeten Temperatur, vernachlässigbar ist. Die erhaltenen Ergebnisse tragen zu Datenbanken bei, die für die Modellierung von Wechselwirkungs- und Migrationsprozessen in Uran / Tongestein-Systemen genutzt werden. Das bedeutet, die gesammelten Sorptions- und Diffusionsdaten sind nicht nur für den Langzeitsicherheitsnachweis eines Endlagers für radioaktive Abfälle von Relevanz, sondern auch für jedes tonhaltige System in der Umwelt, bei dem die geochemische Wechselwirkung mit urankontaminierten Wässern eine Rolle spielt. Bezüglich der Eignung von Opalinuston als Wirtsgestein für ein Endlager radioaktiver Abfälle lässt sich schlussfolgern, dass Opalinuston ein relativ hohes Retardationspotential bezüglich U(VI) aufweist. Wenn U(VI) als Bestandteil des radioaktiven Abfalls bei Wassereinbruch im Endlager in die Umgebung freigesetzt wird, wird es unter umweltrelevanten Bedingungen von Calcium- und Carbonationen, welche aus dem Opalinuston herausgelöst werden, komplexiert. Dabei bildet sich Ca2UO2(CO3)3(aq). Dieser Komplex wird nur schwach durch Sorption am Tongestein zurückgehalten, was zu einer erhöhten U(VI)-Mobilität im Wirtsgestein führen kann. Im untersuchten System wird die U(VI)-Migration durch das Tongestein jedoch durch molekulare Diffusion bestimmt. Sie verzögert die Migration von Ca2UO2(CO3)3(aq) durch Opalinuston und stellt somit den maßgeblichen Retardationsprozess im System dar. Huminsäure hat keinen signifikanten Einfluss auf die U(VI) / Opalinuston-Wechselwirkung, sogar bei einer erhöhten Temperatur von 60 °C. Dies wurde mittels Speziationsmodellierungen sowie durch Sorptions- und Diffusionsversuche gezeigt.
94

Grundlagenuntersuchungen zur elektrochemischen Remediation von schwermetallkontaminierten Boden- /Sediment- Wassersystemen am Beispiel von Uran, Chrom, Arsen und Chlorbenzen

Römer, Dirk 02 February 2005 (has links) (PDF)
In den 80-iger Jahren war die DDR hinter den USA und Kanada der drittgrößte Uranproduzent mit einer Jahresproduktion von ca. 200.000 Tonnen. Die Gewinnung erfolgte durch konventio­nellen Bergbau, durch in- situ- oder offene Haufenlagerung. Die Urangewinnung auf dem Ter­ritorium der ehemaligen DDR wurde nach der Wiedervereinigung eingestellt und mit der Sa­nierung der Altstandorte begonnen. Nach Einstellung des Uranabbaus muss die Wasserhaltung solange betrieben werden, bis eine kontrollierte Flutung der Bergbauschächte erfolgen kann. Die dabei anfallen­den Grubenwässer werden je nach Schadstoffkonzentration direkt in den Vorfluter abgeleitet oder in geeigneten Aufbereitungsanlagen meist durch Flockung und Adsorption behandelt. Dieses praktisch oft angewandte Grubenwasserreinigungsverfahren bezüglich Uran und den auftretenden Begleitelementen Chrom und Arsen hat den entscheidenden Nachteil, dass die anfallenden schwermetallhaltigen Fällschlämme auf Deponien verbracht werden müssen. Durch Niederschlags­ereignisse oder ansteigendes Grundwasser besteht die Gefahr, dass die Deponien wieder ausgelaugt werden und somit eine erneute Mobilisierung von Schwermetallen in die Umwelt erfolgt. Die Sanierung kontaminierter Gebiete, insbesondere Sedimente, Sondermüll-deponien, Standorte ehemaliger Galvanikbetriebe, Betriebsflächen chemischer Industriestandorte, Rieselfelder oder Orte der Klärschlammaufbereitung erfordern neue Herangehensweisen an das gegenwärtig hochaktuelle Problem der Rehabilitation. Es wurde deshalb u.a. im Rahmen dieser Arbeit ein Konzept auf Grundlage der elektrochemischen Umset­zung im &amp;quot;verdünnten&amp;quot; elektrochemischen Festbettreaktor entwickelt, das es gestattet, die mo­bilen Schwermetallspezies im Boden bzw. Deponiekörper in immobile Schwermetallverbindungen um­zuwandeln. Damit kann die Nachsorge und Sicherung solcher Deponiekörper bezüglich einer Remobilisierung wesentlich kostengünstiger gestaltet werden. Ausgehend von diesem Konzept sollen Möglichkeiten, Einsatzbedingungen und -grenzen der Immobilisierung von Schwermetallen am Beispiel von Uran(VI), Chrom(VI), Arsen(III) und chlorierten Kohlenwasserstoffe aufgezeigt werden. Elektrochemische Verfahren zur Sanierung kontaminierter Böden, Schlämme und Sedimente befinden sich international in einer dynamischen Forschungs- und Entwicklungsphase. Sie sind einzeln und in Verfahrenskombinationen einsetzbar und werden, bei verantwortungsvoller Handhabung, in absehbarer Zeit auch als zertifizierte Verfahren in Deutschland in bestimmten Sanierungsvorhaben ihre Leistungsfähigkeit beweisen. Gegenwärtig befinden sie sich in Deutschland noch im Stadium der Forschung und Entwicklung, während international (z.B. USA, Niederlande) schon kommerzielle Anwendungen angeboten werden. Zur objektiven Beurteilung ihrer Leistungsfähigkeit und Einsatzgrenzen bedarf es spezieller Grundkenntnisse. Elektrochemische Remediationsverfahren können als ergänzende, in Einzelfällen auch als alternative Verfahren zur Sediment- und Bodensanierung angesehen werden. Sie haben dann eine Chance auf Einsatz, wenn vor Ort (in- situ) saniert werden soll. Von ihrem Prinzip her, sind sie preiswerter als Bodenaushub und Verbrennung. Das Sanierungsziel besteht in einer möglichst vollständigen Konzentrierung oder Umsetzung der Wasserschadstoffe an der Feststoffmatrix.
95

Grundlagenuntersuchungen zur elektrochemischen Remediation von schwermetallkontaminierten Boden- /Sediment- Wassersystemen am Beispiel von Uran, Chrom, Arsen und Chlorbenzen

Römer, Dirk 10 August 2004 (has links)
In den 80-iger Jahren war die DDR hinter den USA und Kanada der drittgrößte Uranproduzent mit einer Jahresproduktion von ca. 200.000 Tonnen. Die Gewinnung erfolgte durch konventio­nellen Bergbau, durch in- situ- oder offene Haufenlagerung. Die Urangewinnung auf dem Ter­ritorium der ehemaligen DDR wurde nach der Wiedervereinigung eingestellt und mit der Sa­nierung der Altstandorte begonnen. Nach Einstellung des Uranabbaus muss die Wasserhaltung solange betrieben werden, bis eine kontrollierte Flutung der Bergbauschächte erfolgen kann. Die dabei anfallen­den Grubenwässer werden je nach Schadstoffkonzentration direkt in den Vorfluter abgeleitet oder in geeigneten Aufbereitungsanlagen meist durch Flockung und Adsorption behandelt. Dieses praktisch oft angewandte Grubenwasserreinigungsverfahren bezüglich Uran und den auftretenden Begleitelementen Chrom und Arsen hat den entscheidenden Nachteil, dass die anfallenden schwermetallhaltigen Fällschlämme auf Deponien verbracht werden müssen. Durch Niederschlags­ereignisse oder ansteigendes Grundwasser besteht die Gefahr, dass die Deponien wieder ausgelaugt werden und somit eine erneute Mobilisierung von Schwermetallen in die Umwelt erfolgt. Die Sanierung kontaminierter Gebiete, insbesondere Sedimente, Sondermüll-deponien, Standorte ehemaliger Galvanikbetriebe, Betriebsflächen chemischer Industriestandorte, Rieselfelder oder Orte der Klärschlammaufbereitung erfordern neue Herangehensweisen an das gegenwärtig hochaktuelle Problem der Rehabilitation. Es wurde deshalb u.a. im Rahmen dieser Arbeit ein Konzept auf Grundlage der elektrochemischen Umset­zung im &amp;quot;verdünnten&amp;quot; elektrochemischen Festbettreaktor entwickelt, das es gestattet, die mo­bilen Schwermetallspezies im Boden bzw. Deponiekörper in immobile Schwermetallverbindungen um­zuwandeln. Damit kann die Nachsorge und Sicherung solcher Deponiekörper bezüglich einer Remobilisierung wesentlich kostengünstiger gestaltet werden. Ausgehend von diesem Konzept sollen Möglichkeiten, Einsatzbedingungen und -grenzen der Immobilisierung von Schwermetallen am Beispiel von Uran(VI), Chrom(VI), Arsen(III) und chlorierten Kohlenwasserstoffe aufgezeigt werden. Elektrochemische Verfahren zur Sanierung kontaminierter Böden, Schlämme und Sedimente befinden sich international in einer dynamischen Forschungs- und Entwicklungsphase. Sie sind einzeln und in Verfahrenskombinationen einsetzbar und werden, bei verantwortungsvoller Handhabung, in absehbarer Zeit auch als zertifizierte Verfahren in Deutschland in bestimmten Sanierungsvorhaben ihre Leistungsfähigkeit beweisen. Gegenwärtig befinden sie sich in Deutschland noch im Stadium der Forschung und Entwicklung, während international (z.B. USA, Niederlande) schon kommerzielle Anwendungen angeboten werden. Zur objektiven Beurteilung ihrer Leistungsfähigkeit und Einsatzgrenzen bedarf es spezieller Grundkenntnisse. Elektrochemische Remediationsverfahren können als ergänzende, in Einzelfällen auch als alternative Verfahren zur Sediment- und Bodensanierung angesehen werden. Sie haben dann eine Chance auf Einsatz, wenn vor Ort (in- situ) saniert werden soll. Von ihrem Prinzip her, sind sie preiswerter als Bodenaushub und Verbrennung. Das Sanierungsziel besteht in einer möglichst vollständigen Konzentrierung oder Umsetzung der Wasserschadstoffe an der Feststoffmatrix.
96

Untersuchungen zur Struktur von wassergelösten und an Hämatit sorbierten Uran(VI)-Komplexen mit aliphatischen (Hydroxy-) Carbonsäuren: Kombination verschiedener spektroskopischer Methoden mit Faktorenanalyse und quantenchemischen Berechnungen / Investigations on the molecular structure of water dissolved and hematite-sorbed uranium(VI) complexes with aliphatic (hydroxo-) carboxylic acids: Combination of several spectroscopic techniques with factor analysis and quantum chemical calculations

Lucks, Christian 15 May 2013 (has links) (PDF)
Im Mittelpunkt der in dieser Arbeit durchgeführten Untersuchungen steht die Aufklärung der Strukturen der Komplexe von Uran mit aliphatischen (Hydroxy-)Carbonsäuren als Liganden sowie die Strukturen, die bei Sorption von Uran an dem Eisenmineral Hämatit in An- und Abwesenheit organischer Säuren gebildet werden. Das ternäre System aus Hämatit, Uran(VI) und organischem Ligand ist sehr komplex. Daher ist es notwendig eine Aufspaltung in einfachere binäre Systeme vorzunehmen und die Ergebnisse dieser Teilsysteme heranzuziehen, um das komplexere ternäre System zu verstehen. Anhand der umfangreichen durchgeführten Arbeiten zu den wässrigen Uran(VI)-Komplexen können nun Rückschlüsse von der Struktur einer Carbonsäure auf die Struktur der gebildeten Uran(VI)-Komplexe in Abhängigkeit vom pH getroffen werden. Zuerst sollte festgehalten werden, dass Uran(VI) üblicherweise pentagonal-bipyramidale Komplexe ergibt. Das Pentaaquauranylion zeigt beispielsweise zwei axiale Sauerstoffatome (Oax) bei einem Abstand von 1,76 Å und fünf äquatoriale Sauerstoffatome (Oeq) bei einem Abstand von 2,40 Å, die von koordinierten Wassermolekülen stammen. Im Zuge der Komplexierung mit organischen Liganden werden die Wassermoleküle durch organische Liganden ersetzt, was zu messbaren Veränderungen der Bindungsabstände führt. Monocarbonsäuren bilden mit Ausnahme der Ameisensäure nacheinander mit steigendem pH 1:1-, 1:2- und 1:3-Komplexe. Die teilweise in der Literatur postulierten 1:4-Komplexe beschränken sich wahrscheinlich auf extrem hohe Ligandkonzentration (>>1 M) oder nicht-wässrige Lösungen (z. B. 1:4-U-ac-Komplex [Ryan 1967]). Anhand der Verringerung der spektralen Aufspaltung Δν der symmetrischen und antisymmetrischen Valenzschwingung der Carboxygruppe konnte für diese Komplexe eine bidentate Koordination nachgewiesen werden. Mittels EXAFS konnte die bidentate Struktur anhand einer Verlängerung des Oeq-Abstandes auf 2,47 Å im Falle der 1:3-Komplexe in den Systemen U-ac und U-prop bestätigt werden. Die Ameisensäure hingegen bildet monodentate Komplexe. Dies konnte durch eine Erhöhung von Δν und eine Verkürzung des Oeq-Abstandes gezeigt werden. Ursache für dieses Verhalten ist der fehlende +I-Effekt durch den organischen Rest, der unter anderem eine deutliche Erhöhung der Säurestärke im Falle der Ameisensäure nach sich zieht. Bei Bi- und Tricarbonsäuren bestimmt der Abstand der Carboxygruppen zueinander, welche Art der Koordinierung auftritt. Werden die Carboxygruppen durch maximal ein Kohlenstoffatom voneinander getrennt (Oxal- und Malonsäure) oder wird durch eine cis-Doppelbindung eine cis-Konfiguration der Carboxygruppen zueinander erzwungen (Maleinsäure), treten 1:1- und 1:2 , sowie für Oxalsäure auch 1:3-Komplexe mit chelatartiger Koordinierung auf. Dies wird durch eine Erhöhung von Δν und eine Verringerung von r(U-Oeq) auf 2,36 Å (1:2-Komplexe) untermauert. Liegen mindestens zwei Kohlenstoffatome zwischen den Carboxygruppen (Bernsteinsäure, Tricarballylsäure), so bilden sich überwiegend bidentate Komplexe aus. Der 1:3-Komplex im System U-suc ist allerdings gemischt bidentat/monodentat und erreicht deshalb auch einen gegenüber dem 1:3 U-ac Komplex etwas verkürzten Oeq-Abstand von 2,45 Å. Eine weitere wichtige Gruppe von Liganden sind die α- und β-Hydroxycarbonsäuren. Die α-Hydroxycarbonsäuren bilden 1:1-, 1:2-, 2:2- und 3:3-Komplexe aus. Der Ligand koordiniert dabei als 5-Ring-Chelat an Uran(VI). Die Bildung polynuklearer Spezies wird belegt mit einem stufenweisen und sehr starken Ansteigen der Absorption im UV/VIS-Bereich, der durch eine Deformation der linearen O=U=O-Bindung hervorgerufen wird. Außerdem zeigt die EXAFS-Spektroskopie, dass bei pH ~ 2–4 eine U-U-Wechselwirkung bei r(U-U) ~ 3,92 Å auftritt, wodurch die Bildung eines µ2-O verbrückten Dimers nachgewiesen ist. Im nahneutralen pH-Bereich (pH 6–7) ist eine sehr starke U-U-Wechselwirkung bei r(U-U) ~ 3,83 Å er-kennbar. Diese kann durch Ausbildung einer µ3-O verbrückten dreikernigen Struktur erklärt werden. Zwischen den α-Hydroxymonocarbonsäuren und den α-Hydroxydi- und -tricarbon-säuren, die als substituierte Äpfelsäure aufgefasst werden können, besteht der wesentliche Unterschied, dass die Homologen der Äpfelsäure das Dimer im oben genannten pH-Bereich als dominierende Spezies aufweisen, während es bei den Monocarbonsäuren erst bei höheren pH-Werten (pH ~ 4–5) und lediglich zu ~50 % (lac) auftritt. Die β-Hydroxycarbonsäuren bilden hingegen bidentat koordinierende 1:1-, 1:2- und 1:3-Komplexe. Die 1:3-Komplexe sind isostrukturell zum 1:3-U-ac-Komplex. Die Hydroxygruppe in β-Position beteiligt sich folglich nicht an der Komplexierung. Bei der Sorption von Uran(VI) an Hämatit in An- und Abwesenheit organischer Liganden ergibt sich ein breit gefächertes Spektrum an Möglichkeiten. Allgemein lässt sich feststellen, dass die Sorption etwa bei pH 3–4 einsetzt und im nahneutralen pH-Bereich (pH 6–7) maximal wird. Die Anwesenheit organischer Liganden bewirkt im Allgemeinen eine Verschiebung der Sorptionskante zu höheren pH-Werten, wobei folgende Reihenfolge der pH-Werte bei 50 %iger Sorption zu beobachten war: ohne Ligand ~ Protocatechusäure < Essigsäure < Bernsteinsäure < Weinsäure. Weiterhin kann festgestellt werden, dass die Sorptionskomplexe in der Nähe der Sorptionskante monomer sind und in oligomere Urankomplexe im nahneutralen pH-Bereich übergehen. Ohne Zugabe eines Liganden bildet sich mit steigendem pH zuerst ein über Kante verknüpfter, monomerer Sorptionskomplex (ES-Monomer) aus, der sich durch einen Fe-Abstand von ~3,45 Å und einen Oeq-Abstand von ~2,40 Å auszeichnet. Im neutralen pH-Bereich sorbiert Uran als oligomerer (wahrscheinlich dreikerniger) Sorptionskomplex (ES-Trimer) mit r(U-U) = 3,82–3,88 Å und r(U-Oeq) = 2,33–2,37 Å. Im Übergangsbereich kann sich zu geringen Teilen ein einfach oder doppelt über Ecke verknüpfter Sorptionskomplex (SCS- oder DCS-Monomer), wobei das SCS-Monomer einen Fe-Abstand von ~3,70–3,75 Å und einen Oeq-Abstand von ~2,40 Å aufweist, bilden. In Gegenwart von Essigsäure ändern sich lediglich die Strukturparameter minimal. In Gegenwart von Bernstein- und Weinsäure bilden sich im Gegensatz dazu über den Liganden verknüpfte Sorptionskomplexe aus, die also keine U-Fe-Wechselwirkung zeigen und sich besonders durch ihren sehr niedrigen DW(Oeq) von den anderen Sorptionskomplexen unter-scheiden. Im neutralen pH-Bereich liegen wiederum dreikernige Sorptionskomplexe vor, wo-bei es im Falle der Weinsäure auch möglich wäre, dass das aus dem aquatischen System be-kannte Trimer über die Weinsäure an die Oberfläche bindet. Im Unterschied dazu sorbiert Uran(VI) in Gegenwart der Protocatechusäure nahe der Sorptionskante als Gemisch eines monomeren ES- und DCS-Komplexes. Bei weiterer Erhöhung des pH dominiert der DCS-Komplex, der eine starke U-Fe-Wechselwirkung bei r(U-Fe) = 4,19 Å zeigt. Eine Oligomerisierung bleibt in diesem Falle aus. Die im Rahmen dieser Arbeit gewonnenen Ergebnisse tragen zu einem besseren Verständnis der Wechselwirkung von Uran(VI) mit organischen Säuren, sowie von Uran(VI) mit Hämatit in Gegenwart organischer Säuren, bei und liefern die Strukturen für die gebildeten wässrigen Komplexe und die Sorptionskomplexe. Damit unterstützen sie den Aufklärungsprozess des Transports radioaktiver Stoffe und können somit zuverlässigere Risikobewertungen für Endlager nuklearer Abfälle und für Rückstände des Uranerzbergbaus ermöglichen. / This study is focussed on throwing light on the structures of uranium(VI) complexes with aliphatic (hydroxy-) carboxylic acids and on the structures of the sorption complexes on the iron mineral hematite in presence and absence of organic acids. The ternary system of hematite, uranium(VI), and organic ligand is very complicated, thus it is necessary to decompose it in binary systems. The results within these binary systems are used to better understand the complicated ternary system. Based on the comprehensive investigations on the aqueous uranium(VI) complexes, it is now possible to draw inferences from the structure of the carboxylic acid about the structure of the formed uranium(VI) complex in dependence of the pH. At first it has to be mentioned that uranium(VI) commonly gives pentagonal bipyramidal complexes. The pentaaquauranylion is formed by two axial oxygen atoms (Oax) at a distance of 1.76 Å and five equatorial oxygen atoms (Oeq) at 2.40 Å stemming from coordinated water molecules. Due to complexation with organic ligands water is replaced by the ligand, thus the interatomic distances change. Monocarboxylic acids, except for formic acid, form with rising pH 1:1, 1:2, and 1:3 complex-es, successively. 1:4-complexes that were sometimes postulated in literature are probably restricted to very high ligand concentrations (>>1 M) or to non-aqueous solutions. On the basis of the decrease of the spectral splitting Δν of the symmetric and antisymmetric vibration mode of the carboxylic group bidentate coordination is verified. By using EXAFS spectros-copy the structure of the 1:3 complexes with acetic and propionic acid shows an elongation of the U-Oeq distance (r(U-Oeq)) to 2.47 Å and a six fold coordination in the equatorial plane. This distance is characteristic for bidentate coordination of the carboxylic group. In contrast, formic acid gives monodentate complexes. This is proved by an increase of Δν and a shortening of r(U-Oeq). The reason for this behaviour is the missing +I effect from the organic chain that accounts for a dramatically stronger acidity of formic acid. Among the bi- and tricarboxylic acids, the distance between the carboxylic groups is decisive for the prevailing mode of coordination. If the carboxylic groups are only separated by no more than one carbon atom (oxalic and malonic acid) or if the cis-configuration of the carboxylic groups is enforced by a cis-configuration of the ligand (maleic acid), 1:1 and 1:2 complexes with chelating coordination will be formed. This is evidenced by an increase of Δν and a decrease of r(U-Oeq) to 2.36 Å (1:2-complexes). If at least two carbon atoms separate the carboxylic groups from each other (succinic acid), the coordination will be mainly bidentate. However, the 1:3 complex in the U-suc system gives a mixed bidentate/monodentate coordination, thus r(U-Oeq) is only increased to 2.45 Å. Another important group of ligands are the α- and β-Hydroxy acids. α-Hydroxy acids form 1:1, 1:2, 2:2, and 3:3 complexes with rising pH. In all cases the ligand gives 5-membered ring chelates. The formation of polynuclear species is evidenced by a stepwise and very strong increase of the absorption in the UV-Vis range that is caused by a deformation of the linear O=U=O moiety. Moreover, EXAFS spectroscopy shows a uranium-uranium interaction at r(U-U) ~ 3.92 Å in the pH range of 2–4. This distance gives evidence for the formation of a µ2-O bridged dimer. In the near neutral pH range (pH 6–7) a very strong U-U interaction is visible at r(U-U) ~ 3,83 Å. This feature can be explained by the formation of a µ3-O bridged trimeric structure. The main difference between the α-Hydroxy diacids that can be understood as homologues of malic acid and the α-Hydroxy monoacids (glycolic acid, lactic acid, etc.) is the strength of the dimeric complex. Among the homologues of malic acid the complex sta-bility constant of the dimer is so high that the formation of a 1:2 complex is suppressed and the relative concentration of the dimer is at least 90 % in the pH range of 2–4. Among the α-Hydroxy monoacids the occurrence of the dimer is shifted to higher pH values and the relative concentration is limited (e.g. ~50 % in the U-lac system). On the contrary, β-Hydroxy acids form bidentate coordinated 1:1, 1:2, and 1:3 complexes. The 1:3 complexes are isostructural to the 1:3 complex in the U-ac system. Hence, the β-Hydoxy group does not participate in the coordination. For the sorption of uranium(VI) on hematite in absence and presence of organic ligands a widespread array of opportunities exists. In general, sorption starts at pH 3–4 and reaches its maximum in the near neutral pH range (pH 6–7). The presence of organic ligands leads to a shift of the sorption edge to higher pH. The following sequence of the pH where 50 % sorp-tion is reached were found: without ligand ~ protocatechuic acid < acetic acid < succinic acid < tartaric acid. Moreover, it can be stated that the complexes near to the sorption edge are monomeric and merge into oligomeric uranium(VI) complexes in the near neutral pH range. In the absence of organic ligands a monomeric edge-sharing complex (ES monomer) is formed at low pH which is characterized by an U-Fe distance of ~3.45 Å and an Oeq distance of ~2.40 Å. In the near neutral pH range an oligomeric edge-sharing complex (ES trimer) is formed with r(U-U) = 3.82–3.88 Å and r(U-Oeq) = 2.33–2.37 Å. It is possible that in the intermediate pH range a small fraction of single or double corner-sharing (SCS or DCS) complexes occur. The SCS monomer is characterized by r(U-Fe) ~3,70–3,75 Å and r(U-Oeq) ~2,40 Å. The presence of acetic acid has only small effects on the structural parameters. In presence of succinic and tartaric acid and at low pH the sorption complexes are of the type hematite-ligand-uranium, thus no uranium-iron interaction can be found and the DW(Oeq) is very small in contrast to all the other investigated sorption complexes. In the neutral pH range trimeric sorption complexes are formed again. In case of tartaric acid it is conceivable that the trimeric complex known from the aqueous U-tar system is sorbed to the hematite surface. In contrast, the presence of protocatechuic acid results in the formation of a mixture of ES and DCS monomeric complexes at low pH. With ongoing increase of pH the fraction of the DCS monomer rises. This DCS complex shows a strong uranium-iron interaction at r(U-Fe) = 4,19 Å. A formation of oligomeric complexes at neutral pH does not appear. The results gained during all these investigations can help to better understand the interaction of uranium(VI) and carboxylic acids, and beyond that the sorption of uranium(VI) on hematite in the presence of carboxylic acids. Structures of the aqueous and sorption complexes are proposed. All these findings support the ongoing research on the transport behaviour of radioactive matter and may lead to more reliable risk assessment in connection with the permanent disposal of nuclear waste and the residues of uranium mining.
97

Prokaryotic microorganisms in uranium mining waste piles and their interactions with uranium and other heavy metals

Geißler, Andrea 23 July 2009 (has links) (PDF)
The influence of uranyl and sodium nitrate under aerobic and anaerobic conditions on the microbial community structure of a soil sample from the uranium mining waste pile Haberland in Germany was studied by using the 16S rRNA gene retrieval. The results demonstrate a shifting in the bacterial populations depending on the treatment, whereas the archaeal community was changed independently of the treatment. By using the nitrate reductase gene (narG) as a functional marker, it was additionally demonstrated that some of the bacteria stimulated possess the membrane-bound nitrate reductase. In addition, two Arthrobacter strains were isolated from the studied uranium mining waste pile, which tolerate relatively high concentrations of uranium and heavy metals. These strains are able to precipitate lead as lead sulphide (galena) or lead phosphate mineral phase (pyromorphite) depending on their physiological state and to accumulate uranium intracellularly. The results demonstrate a microbial community in the uranium mining waste pile Haberland, which is able to influence the fate of uranium.
98

Understanding sorption mechanisms of uranium onto elemental iron, minerals and Shewanella putrefaciens surfaces in the presence of arsenic

N’zau Umba-di-Mbudi, Clement 19 March 2010 (has links) (PDF)
The concomitant occurrence and reported discrepant behavior of uranium and arsenic in water bodies is a major health and environmental concern. This study combined batch and column experiments, hydrogeochemical simulations and XAFS spectroscopy to uncover the exchange mechanisms governing uranium fate between water and scrap metallic iron, minerals and Shewanella putrefaciens surfaces in the presence of arsenic. The main results suggest that both water chemistry and the solid phase composition influence uranium fate in the presence of arsenic. The importance of uranyl-arsenate species as a major control of uranium behavior in the presence of arsenic is shown. The toxicity of arsenic and the presence of nitrate are interpreted as limiting factors of the enzymatic reduction of both toxins. Besides, XANES fingerprinting and EXAFS modeling have confirmed precipitation/co-precipitation of uranyl-arsenates as a major mechanism controlling uranium behavior in the presence of arsenic.
99

Nuclear reactor core model for the advancednuclear fuel cycle simulator FANCSEE. Advanceduse of Monte Carlo methods in nuclear reactorcalculations

Skwarcan-Bidakowski, Alexander January 2017 (has links)
A detailed reactor core modeling of the LOVIISA-2 PWR and FORSMARK-3BWR was performed in the Serpent 2 Continuous Energy Monte-Carlocode.Both models of the reactors were completed but the approximations ofthe atomic densities of nuclides present in the core differedsignificantly.In the LOVIISA-2 PWR, the predicted atomic density for the nuclidesapproximated by Chebyshev Rational Approximation method (CRAM)coincided with the corrected atomic density simulated by the Serpent2 program. In the case of FORSMARK-3 BWR, the atomic density fromCRAM poorly approximated the data returned by the simulation inSerpent 2. Due to boiling of the moderator in the core of FORSMARK-3,the model seemed to encounter problems of fission density, whichyielded unusable results.The results based on the models of the reactor cores are significantto the FANCSEE Nuclear fuel cycle simulator, which will be used as adataset for the nuclear fuel cycle burnup in the reactors. / FANCSEE
100

Vliv působení uranu na metabolismus sacharidů kultivovaných rostlin. / The effect of uranium on carbohydrate metabolism of cultivated plants.

Lábusová, Jana January 2013 (has links)
Nowadays, the environmental pollution by heavy metals is very serious problem all around the world. Radionuclides, including uranium, are heavy metals that cause both chemical and radioactive pollution. Naturally occurring uranium is not so dangerous for living organisms. Human activities, especially uranium ore mining and use of phosphate fertilizers, have increased its concentration in the environment with consequent contamination of soil, water and air. Compared to other countries, the Czech Republic is relatively rich in deposits of uranium ore. Extensive mining results in large contaminated areas, containing not only uranium but also other heavy metals and xenobiotics that need to be removed from the environment. One way how to decontaminate soils and waters is phytoremediation. This eco-friendly and cost-effective technique exploits the ability of plants to take up, translocate, transform and sequester xenobiotics. In order to provide functional phytoremediation, it is necessary to understand the mechanisms of plant responses to stress caused by xenobiotics. Therefore in my master thesis, I focused on the impact of uranium on physiological processes of uranium-stressed plants, with the emphasis on carbohydrate metabolism and antioxidative defense mechanism. Powered by TCPDF (www.tcpdf.org)

Page generated in 0.0364 seconds