• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1523
  • 603
  • 211
  • 163
  • 161
  • 70
  • 56
  • 30
  • 27
  • 24
  • 24
  • 20
  • 16
  • 14
  • 13
  • Tagged with
  • 3449
  • 1036
  • 726
  • 464
  • 434
  • 401
  • 385
  • 315
  • 309
  • 307
  • 252
  • 248
  • 221
  • 209
  • 187
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

A DSP based variable-speed induction motor drive for a revolving stage

Zhang, Yong 05 1900 (has links)
Variable speed drive technology has advanced dramatically in the last 10 years with the advent of new power devices. In this study, a three phase induction motor drive using Insulated Gate Bipolar Transistors (IGBT) at the inverter power stage is introduced to implement speed and position control for the revolving stage in the Frederic Wood Theatre This thesis presents a solution to control a 3-phase induction motor using the Texas Instruments (TI) Digital Signal Processor (DSP) TMS320F2407A. The use of this DSP yields enhanced operations, fewer system components, lower system cost and increased efficiency. The control algorithm is based on the constant volts-per-hertz principle because the exact speed control is not needed. Reflective object sensors which are mounted on concrete frame are used to detect accurate edge position of revolving stage. The sinusoidal voltage waveforms are generated by the DSP using the space vector modulation technique. In order to satisfy some operating conditions for safe and agreeable operation, a look-up table, which is used to give command voltage and speed signals in software, is applied to limit the maximum speed and acceleration of the revolving stage. Meanwhile, a boost voltage signal is added at the low frequency areas to make the motor produce maximum output torque when starting. A test prototype is then built to validate the performance. Several tests are implemented into the IGBT drive to explore the reason for unacceptable oscillations in IGBT’s gate control signals. Improvement methods in hardware layout are suggested for the final design.
372

Modeling of voltage source converter based HVDC transmission system in EMTP-RV

Hiteshkumar, Patel 01 August 2010 (has links)
Voltage Source Converter (VSC) applications include but are not limited to HVDC, Flexible AC Transmission System (FACTS) devices such as STATCOM, SSSC, UPFC and Wind generators and active filters. The VSC based HVDC system is a feasible option for bulk power transmission over long or short distances and the grid integration of renewable energy sources in existing transmission and distribution systems. The main requirement in a power transmission system is the precise control of active and reactive power flow to maintain the system voltage stability. The VSC operating with the specified vector control strategy can perform independent control of active/reactive power at both ends. This ability of VSC makes it suitable for connection to weak AC networks or even dead networks i.e. without local voltage sources. For power reversal, the DC voltage polarity remains the same for VSC based transmission system and the power transfer depends only on the direction of the DC current. This is advantageous when compared to the conventional Current Source Converter (CSC) based HVDC system. Furthermore, in case of VSC, the reactive power flow can be bi-directional depending on the AC network operating conditions. In this thesis, a 3-phase, 2-level, 6-switch VSC connected to an active but weak AC system at both ends of the HVDC link is developed using EMTP-RV. The VSC-HVDC transmission system model is developed using both direct control and vector control techniques. The direct control method is an approximate method in which the active power, AC voltages at both ends of HVDC link and DC link voltage are controlled directly by using PI-controllers. In vector control method, closed loop feed-forward control system is used to control the active power, reactive power at both ends and DC voltage. By comparing the simulation results, it is concluded that the vector control method is superior to the direct control because of the removal of the coupling between control variables to achieve the independent control of active and reactive powers at both ends of the HVDC link. / UOIT
373

Modeling polarized radiative transfer for improved atmospheric aerosol retrieval with OSIRIS limb scattered spectra

Bathgate, Anthony Franklin 25 February 2011
Retrievals of atmospheric information from satellite observations permit the investigation of otherwise inaccessible atmospheric phenomena. The recovery of this information from optical instrumentation located in orbit requires both an inversion algorithm like the Saskatchewan Multiplicative Algebraic Reconstruction Technique and a forward model like the SASKTRAN radiative transfer model. These are used together at the University of Saskatchewan to retrieve sulphate aerosol extinction profiles from the radiance measurements made by the Canadian built OSIRIS instrument. Although these retrievals are highly successful the process currently does not consider the polarization of light or OSIRIS's polarization sensitivities because SASKTRAN is a scalar model. In this work the development of a vector version of SASKTRAN that can perform polarized radiative transfer calculations is presented.<p> The vector SASKTRAN's results compare favorably with vector SCIATRAN, another polarized model that is in development at the University of Bremen. Comparisons of the stratospheric aerosol retrieval vectors generated from the scalar and vector SASKTRAN results indicate that the polarized calculations are an important factor in future work to improve the aerosol retrievals and to recover particle size or composition information.
374

Representing short sequences in the context of a model organism genome

Lewis, Christopher Thomas 25 May 2009
<p>In the post-genomics era, the sheer volume of data is overwhelming without appropriate tools for data integration and analysis. Studying genomic sequences in the context of other related genomic sequences, i.e. comparative genomics, is a powerful technique enabling the identification of functionally interesting sequence regions based on the principal that similar sequences tend to be either homologous or provide similar functionality.</p> <p>Costs associated with full genome sequencing make it infeasible to sequence every genome of interest. Consequently, simple, smaller genomes are used as model organisms for more complex organisms, for instance, Mouse/Human. An annotated model organism provides a source of annotation for transcribed sequences and other gene regions of the more complex organism based on sequence homology. For example, the gene annotations from the model organism aid interpretation of expression studies in more complex organisms.</p> <p>To assist with comparative genomics research in the Arabidopsis/Brassica (Thale-cress/Canola) model-crop pair, a web-based, graphical genome browser (BioViz) was developed to display short Brassica genomic sequences in the context of the Arabidopsis model organism genome. This involved the development of graphical representations to integrate data from multiple sources and tools, and a novel user interface to provide the user with a more interactive web-based browsing experience. While BioViz was developed for the Arabidopsis/Brassica comparative genomics context, it could be applied to comparative browsing relative to other reference genomes.</p> <p>BioViz proved to be an valuable research support tool for Brassica / Arabidopsis comparative genomics. It provided convenient access to the underlying Arabidopsis annotation, allowed the user to view specific EST sequences in the context of the Arabidopsis genome and other related EST sequences. In addition, the limits to which the project pushed the SVG specification proved influential in the SVG community. The work done for BioViz inspired the definition of an opensource project to define standards for SVG based web applications and a standard framework for SVG based widget sets.</p>
375

Comparison of the bacteria within ticks from allopatric and sympatric populations of Dermacentor andersoni and Dermacentor variabilis near their northern distributional limits in Canada

Dergousoff, Shaun J. 17 August 2011
Understanding the ecology and epidemiology of tick-borne diseases requires detailed knowledge of the complex interactions among the tick vector, the microorganisms they carry and the vertebrate hosts used by ticks, as well as the environmental conditions experienced by all three groups of organisms in this triad. In this thesis, I addressed questions relating to the biology and vector ecology of the Rocky Mountain wood tick (Dermacentor andersoni) and the American dog tick (Dermacentor variabilis). Comparisons were made of the distribution of both tick species, the vertebrate hosts used by immature ticks, and the types and prevalence of bacteria in individual ticks from multiple localities near the northern extent of their geographic ranges in western Canada. The results revealed that the distributions of both D. andersoni and D. variabilis have expanded since the 1960s, and there is now a broad zone of sympatry in southern Saskatchewan. In this zone of sympatry, D. andersoni and D. variabilis immatures were found to use the same species of small mammals as hosts and, in some cases, the same host individuals. This provides for the possibility of cross-transmission of bacteria from one tick species to the other. Bacteria of several genera (e.g. Rickettsia, Francisella, Arsenophonus and Anaplasma) were detected in D. andersoni and/or D. variabilis, some of which represented new tick-bacteria associations. However, most bacterial species were highly host (tick)-specific, except for three examples of apparent host switching from one tick species to the other at localities where the two tick species occurred in sympatry. The findings of this thesis provide a basis for understanding microbial transmission, the structure of tick-borne microbial communities, the risk of tick-borne disease in humans and animals, and the vector potential of D. andersoni and D. variabilis in geographical areas where they have not been studied previously.
376

Prediction of Oxidation States of Cysteines and Disulphide Connectivity

Du, Aiguo 27 November 2007 (has links)
Knowledge on cysteine oxidation state and disulfide bond connectivity is of great importance to protein chemistry and 3-D structures. This research is aimed at finding the most relevant features in prediction of cysteines oxidation states and the disulfide bonds connectivity of proteins. Models predicting the oxidation states of cysteines are developed with machine learning techniques such as Support Vector Machines (SVMs) and Associative Neural Networks (ASNNs). A record high prediction accuracy of oxidation state, 95%, is achieved by incorporating the oxidation states of N-terminus cysteines, flanking sequences of cysteines and global information on the protein chain (number of cysteines, length of the chain and amino acids composition of the chain etc.) into the SVM encoding. This is 5% higher than the current methods. This indicates to us that the oxidation states of amino terminal cysteines infer the oxidation states of other cysteines in the same protein chain. Satisfactory prediction results are also obtained with the newer and more inclusive SPX dataset, especially for chains with higher number of cysteines. Compared to literature methods, our approach is a one-step prediction system, which is easier to implement and use. A side by side comparison of SVM and ASNN is conducted. Results indicated that SVM outperform ASNN on this particular problem. For the prediction of correct pairings of cysteines to form disulfide bonds, we first study disulfide connectivity by calculating the local interaction potentials between the flanking sequences of the cysteine pairs. The obtained interaction potential is further adjusted by the coefficients related to the binding motif of enzymes during disulfide formation and also by the linear distance between the cysteine pairs. Finally, maximized weight matching algorithm is applied and performance of the interaction potentials evaluated. Overall prediction accuracy is unsatisfactory compared with the literature. SVM is used to predict the disulfide connectivity with the assumption that oxidation states of cysteines on the protein are known. Information on binding region during disulfide formation, distance between cysteine pairs, global information of the protein chain and the flanking sequences around the cysteine pairs are included in the SVM encoding. Prediction results illustrate the advantage of using possible anchor region information.
377

Detection and segmentation of moving objects in video using optical vector flow estimation

Malhotra, Rishabh 24 July 2008
The objective of this thesis is to detect and identify moving objects in a video sequence. The currently available techniques for motion estimation can be broadly categorized into two main classes: block matching methods and optical flow methods.<p>This thesis investigates the different motion estimation algorithms used for video processing applications. Among the available motion estimation methods, the Lucas Kanade Optical Flow Algorithm has been used in this thesis for detection of moving objects in a video sequence. Derivatives of image brightness with respect to x-direction, y-direction and time t are calculated to solve the Optical Flow Constraint Equation. The algorithm produces results in the form of horizontal and vertical components of optical flow velocity, u and v respectively. This optical flow velocity is measured in the form of vectors and has been used to segment the moving objects from the video sequence. The algorithm has been applied to different sets of synthetic and real video sequences.<p>This method has been modified to include parameters such as neighborhood size and Gaussian pyramid filtering which improve the motion estimation process. The concept of Gaussian pyramids has been used to simplify the complex video sequences and the optical flow algorithm has been applied to different levels of pyramids. The estimated motion derived from the difference in the optical flow vectors for moving objects and stationary background has been used to segment the moving objects in the video sequences. A combination of erosion and dilation techniques is then used to improve the quality of already segmented content.<p>The Lucas Kanade Optical Flow Algorithm along with other considered parameters produces encouraging motion estimation and segmentation results. The consistency of the algorithm has been tested by the usage of different types of motion and video sequences. Other contributions of this thesis also include a comparative analysis of the optical flow algorithm with other existing motion estimation and segmentation techniques. The comparison shows that there is need to achieve a balance between accuracy and computational speed for the implementation of any motion estimation algorithm in real time for video surveillance.
378

Comparison of the bacteria within ticks from allopatric and sympatric populations of Dermacentor andersoni and Dermacentor variabilis near their northern distributional limits in Canada

Dergousoff, Shaun J. 17 August 2011 (has links)
Understanding the ecology and epidemiology of tick-borne diseases requires detailed knowledge of the complex interactions among the tick vector, the microorganisms they carry and the vertebrate hosts used by ticks, as well as the environmental conditions experienced by all three groups of organisms in this triad. In this thesis, I addressed questions relating to the biology and vector ecology of the Rocky Mountain wood tick (Dermacentor andersoni) and the American dog tick (Dermacentor variabilis). Comparisons were made of the distribution of both tick species, the vertebrate hosts used by immature ticks, and the types and prevalence of bacteria in individual ticks from multiple localities near the northern extent of their geographic ranges in western Canada. The results revealed that the distributions of both D. andersoni and D. variabilis have expanded since the 1960s, and there is now a broad zone of sympatry in southern Saskatchewan. In this zone of sympatry, D. andersoni and D. variabilis immatures were found to use the same species of small mammals as hosts and, in some cases, the same host individuals. This provides for the possibility of cross-transmission of bacteria from one tick species to the other. Bacteria of several genera (e.g. Rickettsia, Francisella, Arsenophonus and Anaplasma) were detected in D. andersoni and/or D. variabilis, some of which represented new tick-bacteria associations. However, most bacterial species were highly host (tick)-specific, except for three examples of apparent host switching from one tick species to the other at localities where the two tick species occurred in sympatry. The findings of this thesis provide a basis for understanding microbial transmission, the structure of tick-borne microbial communities, the risk of tick-borne disease in humans and animals, and the vector potential of D. andersoni and D. variabilis in geographical areas where they have not been studied previously.
379

Efficient algorithm to construct phi function in vector space secret sharing scheme and application of secret sharing scheme in Visual Cryptography

Potay, Sunny 01 May 2012 (has links)
Secret Sharing refers to a method through which a secret key K can be shared among a group of authorized participants, such that when they come together later, they can figure out the secret key K to decrypt the encrypted message. Any group which is not authorized cannot determine the secret key K. Some of the important secret schemes are Shamir Threshold Scheme, Monotone Circuit Scheme, and Brickell Vector Space Scheme. Brikell’s vector space secret sharing construction requires the existence of a function from a set of participant P in to vector space Zdp, where p is a prime number and d is a positive number. There is no known algorithm to construct such a function in general. We developed an efficient algorithm to construct function for some special secret sharing scheme. We also give an algorithm to demonstrate how a secret sharing scheme can be used in visual cryptography.
380

On the algebraic limit cycles of quadratic systems

Sorolla Bardají, Jordi 17 May 2005 (has links)
No description available.

Page generated in 0.0365 seconds