1 |
Interfacial Phenomena at the Graphene-Liquid-Interface in Nanostructure Devices: Faradaic Effect, Edge-Gating and Van Der Waals HeterostructuresNeubert, Tilmann Joachim 03 February 2022 (has links)
In dieser Arbeit werden verschiedene Aspekte des Designs und der Funktionsweise von in Flüssigkeit betriebenen Graphen-basierten Sensoren untersucht, wodurch neue Einblicke in grundlegende Prozesse an der Graphen-Flüssigkeits-Grenzfläche gewonnen werden. Zunächst wird die Wirkung redoxaktiver Moleküle in der Elektrolytlösung in elektrochemisch gesteuerten Graphen-FETs untersucht. Während des Betriebs kann ein heterogener Elektronentransfer stattfinden, der zu Faradayschen Strömen am Graphenkanal führt. Diese führen zu Verschiebungen der Transferkurve von Graphen, da die Graphen-Flüssigkeits-Grenzfläche eine nur teilweise polarisierbare Elektrode darstellt. Dies wird als „Faradayscher Effekt“ bezeichnet. Er unterscheidet sich grundlegend von typischen Transduktionsmechanismen. Parameter, die den Faradayschen Effekts beeinflussen, werden detailliert untersucht. So sind die Verschiebungen z.B. abhängig von der Graphenkanalfläche. Der zweite Abschnitt konzentriert sich auf die Kante von Graphen, die einen nanoskopischen eindimensionalen Defekt des zweidimensionalen Materials darstellt. In dieser Arbeit wird ein neuer Graphen-FET vorgestellt, der auf der Steuerung von Graphen nur über die elektrochemische Doppelschicht an der Kante basiert. Um dies zu erreichen, wird der basale Teil des Graphens durch eine Passivierung vollständig von der Elektrolytlösung abgeschirmt. Des Weiteren wird gezeigt, dass die Kante des Graphens durch elektrochemische Modifizierung kovalent funktionalisiert werden kann, wodurch die Ladungsdichte an der Graphenkanten-Flüssigkeits-Grenzfläche effektiv verändert wird. Dabei bleiben die vorteilhaften Eigenschaften der Devices erhalten. Schließlich wird ein neuartiger Ansatz zu Untersuchungen an der Graphenkante in Form von mit hexagonalem Bornitrid-verkapseltem Graphen-Elektroden verfolgt. Die elektroanalytische Detektion von Ferrocenmethanol und Dopamin an der Graphenkante mittels zyklischer Voltammetrie wird an diesen Elektroden gezeigt. / Several aspects of the design and function of sensors based on graphene operated in liquid have been investigated in this thesis, providing new insight into fundamental processes at the graphene-liquid-interface. First, the effect of the presence of redox active molecules in the analyte solution of electrochemically gated graphene FETs is explored. During operation, heterogeneous electron transfer may occur at relevant potentials leading to Faradaic currents at the graphene channel. These lead to doping-like shifts of the transfer curve of graphene, as the graphene-liquid-interface represents a partially polarizable electrode. Due to the origin of the shifts, this observation is termed “Faradaic effect”. It is fundamentally different from typically discussed transduction mechanisms. Parameters influencing the direction and magnitude of the Faradaic effect are discussed in detail, e.g. the shifts are the stronger, the larger the area of the graphene channel. The second part focuses on the edge of graphene, which represents a nanoscopic one-dimensional defect of the two-dimensional material. Here, a new type of graphene FET is introduced based on electrochemical gating of graphene exclusively via the electrical double layer at its edge. To achieve edge-gating, the basal part of graphene is passivated by a photoresist and shielded entirely from interaction with the solution. It is demonstrated that the edge of graphene can be functionalized covalently via electrografting. This changes the charge density at the graphene edge-liquid-interface effectively, while maintaining the favorable transfer characteristics of the devices. Finally, a novel approach towards graphene edge devices was pursued in the form of hexagonal boron nitride encapsulated graphene. The electrochemical detection of ferrocene methanol and dopamine was demonstrated in standard and fastscan cyclic voltammetry at the edge of graphene in these devices.
|
2 |
Isolated Graphene Edge Nanoelectrodes: Fabrication, Selective Functionalization, and Electrochemical SensingYadav, Anur 03 August 2021 (has links)
Diese Arbeit präsentiert eine einfache eine einfache, auf Photolithographie basierende Methode zur Darstellung einer isolierten Graphenkante (oder GrEdge) einer Monolage als Nanoelektrode auf einem isolierenden Substrat vorgestellt. Trotz ihrer Millimeter-Länge verhält sich die nur einen Nanometer breite GrEdge-Elektrode wie ein Nanodraht mit einem hohen Seitenverhältnis von 1000000 zu 1. Des Weiteren wird der Einsatz von elektrochemischer Modifikation (ECM) demonstriert, um die GrEdge selektiv mit Metall-Nanopartikeln und organischen Schichten nicht-kovalente oder kovalente zu funktionalisieren, wodurch die Chemie der Kante verändert werden kann. Durch die Anbringung von Metall-Nanopartikeln kann zusätzlich oberflächenverstärkte Raman-Spektroskopie (SERS) genutzt werden, um die chemische Beschaffenheit sowohl der unberührten als auch der funktionalisierten GrEdge zu charakterisieren.
Die GrEdge weist sehr hohe Mass-entransportraten auf, was charakteristisch für Nanoelektroden ist. Dementsprechend wird die voltammetrische Antwort von der Kinetik des heterogenen Elektrontransfers (HET) diktiert. An der GrEdge-Elektrode werden hohe HET-Raten beobachtet: mindestens 14 cm/s für Außensphäre sonde Ferrocenmethanol (FcMeOH) mit einem quasi-Nernst'schen Verhalten und 0,06 cm/s oder höher für innere Sphäre sonde Ferricyanide ([Fe(CN)6]3-) mit einer kinetisch kontrollierten Reaktion. Nach der selektiven Modifikation der Kante mit Goldnanopartikeln erweist sich der HET als reversibel, mit einer massentransportbegrenztes Nernst‘sches Verhalten aufweisen für beide Redoxmoleküle. Darüber hinaus ermöglicht die schnelle HET-Kinetik die Detektion der reduzierten Form von Nicotinamid-Adenin-Dinukleotid (NADH) und Flavin-Adenin-Dinukleotid (FAD) mit niedrigen Ansatzpotentialen und hinunter bis zu niedrigen mikromolaren Konzentrationen. Entsprechend verbessert die vorliegende Arbeit das Verständnis der Kante von Graphen und deren Chemie. / This thesis presents a simple photolithography-based method to realize the isolated monolayer graphene edge (or GrEdge) nanoelectrode on an insulating substrate. The millimeter-long and a nanometer-wide GrEdge is found to behave like a nanowire with a high aspect ratio of 1000000-to-1. Further, the use of electrochemical modification (ECM) is demonstrated to selectively functionalize the GrEdge with metal nanoparticles and organic moieties in a non-covalent/ covalent manner to tune the chemistry of the edge. The attachment of metal nanoparticles was used to exploit surface-enhanced Raman scattering (SERS) to characterize the chemistry of both the pristine and the functionalized GrEdge.
The GrEdge electrodes were found to exhibit very high mass transport rates, characteristic of nanoelectrodes. Accordingly, the voltammetric response is found to be dictated by the kinetics of heterogeneous electron transfer (HET), attributed to the nanoscale geometry and a unique diffusional profile at such electrodes. At the GrEdge electrode, high HET rates are observed: at least 14 cm/s for outer-sphere probe, ferrocenemethanol (FcMeOH) with a quasi-Nernstian behavior; and 0.06 cm/s or higher for inner-sphere probe, ferricyanide ([Fe(CN)6]3-) with a kinetically controlled response. Upon selective modification of the edge with gold nanoparticles, the HET is found to be reversible, with a mass-transport-limited Nernstian response for both probes. Furthermore, the fast HET kinetics enables the sensing of the reduced form of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with low onset potentials and down to low micromolar concentrations. Hence, this thesis improves the understanding of the edges of graphene and their chemistry. It also realizes isolated GrEdge as a new class of nanoelectrode which forms an important basis within the fields of fundamental electrochemistry and analytical sciences.
|
Page generated in 0.018 seconds