• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 72
  • 64
  • 50
  • 25
  • 21
  • 15
  • 10
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 681
  • 198
  • 163
  • 137
  • 136
  • 135
  • 128
  • 124
  • 119
  • 85
  • 81
  • 75
  • 73
  • 69
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Global Interconnects in the Presence of Uncertainty

Benito, Ibis D 01 January 2008 (has links) (PDF)
Global interconnect reliability is becoming a bigger issue as we scale down further into the submicron regime. As transistor dimensions get smaller, variations in the manufacturing process, and temperature variations may cause undesired behavior, and as a result, compromise performance. This work makes an effort to characterize the effects of such variations, to provide designers with a guideline for making designs tolerant to these variations while benefiting from tighter design margins. Since interconnects contribute to most of the delay and power on a chip, interconnect performance becomes a primary issue in design. One of the main concerns when considering physical transistor dimension variations is the effect on delay. Due to smaller transistor dimensions, the photolithographic process may produce transistors with significant variations from the ideal physical dimensions. Such variations cause delay uncertainty which can lead to over or underestimation in the design phase. This work examines interconnects to establish a guideline of the effect that process variations have on delay. A repeated interconnect is analyzed and the effects of physical device variations on delay are observed. Given the delay distribution in the presence of Leff variation, a supply voltage assignment technique is proposed to correct the observed deviation from the nominal delay on a long, repeated interconnect. This technique results in a significant reduction of the delay distribution, with a negligible power overhead. After looking at static variation effects on interconnect performance, this thesis addresses thermal variations on global signals, which cause delay degradation and may lead to timing failures. Given the presence of a large thermal gradient along a clock signal in a data path clocked by two leaves of an H-tree, several thermal scenarios which can compromise timing are discussed. A buffer-based skew compensation technique is proposed to correct the effect of thermal and manufacturing variations on this system. Having characterized repeated interconnect performance under process variations, the bandwidth of the line can be more effectively utilized by using a technique called phase coding. Phase coded interconnects are introduced in the context of using them once an interconnect has been adequately modeled in the presence of variations. With guidelines quantifying the effects of process variations on interconnect techniques and careful characterization, designers can factor these considerations into their design process, reducing the variation from the nominal expected behavior and allowing for smaller design margins. This will lead to more reliable products as we advance into future technologies and transistor dimensions get smaller.
232

Current-sensed Interconnects: Static Power Reducation and Sensitivity to Temperature

Xu, Sheng 01 January 2007 (has links) (PDF)
Global on-chip interconnects in deep sub-micron CMOS present challenges in satisfying delay constraints in the presence of noise and dramatic temperature variations, while minimizing energy consumption due to leakage and static power. Although repeaters are typically used to reduce delay and maintain signal integrity in long interconnects, they introduce significant area, power (both dynamic and leakage), delay, noise and design overhead as well as exacerbating variations due to their local power supply noise and temperature. Current-Sensing is an alternative to repeaters that transfers signals with no intermediate circuits by sensing current rather than voltage at the end of a long interconnect. Among the current sensing circuits, Differential Current-Sensing (DCS), which uses conventional CMOS inverters to drive differential signal, is preferred because of its high common-mode noise rejection. The DCS circuit is fast and simple in layout compared to repeater insertion despite significant static and leakage power which remains a barrier for broad application. Temperature variation throughout the chip also causes the timing uncertainty on interconnects to increase. This thesis addresses current-sensing interconnect circuit design in several aspects. First, it provides an improved differential current-sensing circuit called the differential leakage-aware sense amplifier (DLASA), that uses local power gating that results in 39.6% reduced leakage and static power compared to conventional differential current sensing. Secondly, thermal impact on interconnect is studied and temperature sensitivity is analyzed for interconnect circuits. Theoretical analysis is discussed as a base design guideline, then accurate simulation based experiments in 65nm, 45nm and 32nm CMOS technologies are used for verification from 25OC to 150OC. Thus this project provides a view of the year of technology toward 2013.
233

An Interconnection Network Topology Generation Scheme for Multicore Systems

Phanibhushana, Bharath 01 January 2013 (has links) (PDF)
Multi-Processor System on Chip (MPSoC) consisting of multiple processing cores connected via a Network on Chip (NoC) has gained prominence over the last decade. Most common way of mapping applications to MPSoCs is by dividing the application into small tasks and representing them in the form of a task graph where the edges connecting the tasks represent the inter task communication. Task scheduling involves mapping task to processor cores so as to meet a specified deadline for the application/task graph. With increase in system complexity and application parallelism, task communication times are tending towards task execution times. Hence the NoC which forms the communication backbone for the cores plays a critical role in meeting the deadlines. In this thesis we present an approach to synthesize a minimal network connecting a set of cores in a MPSoC in the presence of deadlines. Given a task graph and a corresponding task to processor schedule, we have developed a partitioning methodology to generate an efficient interconnection network for the cores. We adopt a 2-phase design flow where we synthesize the network in first phase and in second phase we perform statistical analysis of the network thus generated. We compare our model with a simulated annealing based scheme, a static graph based greedy scheme and the standard mesh topology. The proposed solution offers significant area and performance benefits over the alternate solutions compared in this work.
234

SRAM Compiler for Automated Memory Layout Supporting Multiple Transistor Process Technologies

Hilgers, Brandon 01 July 2015 (has links) (PDF)
This research details the design of an SRAM compiler for quickly creating SRAM blocks for Cal Poly integrated circuit (IC) designs. The compiler generates memory for two process technologies (IBM 180nm cmrf7sf and ON Semiconductor 600nm SCMOS) and requires a minimum number of specifications from the user for ease of use, while still offering the option to customize the performance for speed or area of the generated SRAM cell. By automatically creating SRAM arrays, the compiler saves the user time from having to layout and test memory and allows for quick updates and changes to a design. Memory compilers with various features already exist, but they have several disadvantages. Most memory compilers are expensive, usually only generate memory for one process technology, and don’t allow for user-defined custom SRAM cell optimizations. This free design makes it available for students and institutions that would not be able to afford an industry-made compiler. A compiler that offers multiple process technologies allows for more freedom to design in other processes if needed or desired. An attempt was made for this design to be modular for different process technologies so new processes could be added with ease; however, different process technologies have different DRC rules, making that option very difficult to attain. A customizable SRAM cell based on transistor sizing ratios allows for optimized designs in speed, area, or power, and for academic research. Even for an experienced designer, the layout of a single SRAM cell (1 bit) can take an hour. This command-line-based tool can draw a 1Kb SRAM block in seconds and a 1Mb SRAM block in about 15 minutes. In addition, this compiler also adds a manually laid out precharge circuit to each of the SRAM columns for an enhanced read operation by ensuring the bit lines have valid logic output values. Finally, an analysis on SRAM cell stability is done for creating a robust cell as the default design for the compiler. The default cell design is verified for stability during read and write operations, and has an area of 14.067 µm2 for the cmrf7sf process and 246.42 µm2 for the SCMOS process. All factors considered, this SRAM compiler design overcomes several of the drawbacks of other existing memory compilers.
235

High-Speed Mobile Networks for Modern Farming and Agricultural Systems

Najar, Santos 01 June 2014 (has links) (PDF)
ABSTRACT High-Speed Mobile Networks for Modern Farming and Agricultural Systems J.Santos Najar-Ramirez High-speed mobile networks are necessary for agriculture to inventory individual plant health, maximize yield and minimize the resources applied. More specifically, real-time information on individual plant status is critical to decisions regarding the management of resources reserved and expended. This necessity can be met by the availability of environmental sensors (such as humidity, temperature, and pH) whose data is kept on storage servers connected to static and mobile local area networks. These static and mobile local area networks are connected to cellular, core and satellite networks. For instance, agricultural experts remotely working on vast acreage farms from business offices or while traveling can easily connect their notebook computers and other portable devices to these networks in order to check farm status, send email, read industry news or arrange a visit to neighbor farms or suppliers. Today, several mobile phone companies offer broadband service with 2Mbps downlink in rural and dense urban areas, however, they do not typically exist in farm areas. Although these networks (such as 802.11ac/n, 3G, 4G, etc) are significant achievements, they do not meet the projected needs of the agricultural industry. The present use model of high-speed networks for email and multimedia content, together with agriculture’s expected intensive use of real-time plant and environmental condition monitoring, with statistics/plots and real-time high resolution video, necessitates a highly integrated and highly available networked system. For agricultural experts, attentive to market needs, seamless high-speed wireless communication ‘anywhere, anytime at any speed’ is critical to enhancing their productivity and crop yields.
236

STATIC TIMING ANALYSIS OF MICROPROCESSORS WITH EMPHASIS ON HEURISTICS

Krishnamurthy, Sivasubramaniam T. 29 January 2008 (has links)
No description available.
237

Monte Carlo Alternate Approaches to Statistical Performance Estimation in VLSI Circuits

Srinivasan, Raghuram 27 October 2014 (has links)
No description available.
238

A SCALABLE ARCHITECTURE FOR HIGH SPEED DNA PATTERN MATCHING

KATAM, SHRAVANTHI 21 May 2002 (has links)
No description available.
239

DESIGN AND ANALYSIS OF A 32X32-BIT DATABASE FILTER CHIP BASED ON A CMOS COMPATIBLE PHOTONIC VLSI DEVICE TECHNOLOGY

TANG, JIANJING 02 September 2003 (has links)
No description available.
240

DESIGN AND DEMONSTRATION OF A MULTI-TECHNOLOGY FIELD PROGRAMMABLE GATE ARRAY ARCHITECTURE

MAL, PROSENJIT 01 July 2004 (has links)
No description available.

Page generated in 0.0286 seconds