• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 286
  • 237
  • 100
  • 30
  • 11
  • 9
  • 8
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 800
  • 356
  • 232
  • 177
  • 157
  • 114
  • 109
  • 109
  • 104
  • 94
  • 85
  • 84
  • 82
  • 78
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Nanopartículas de hexacianoferrato (ii) de cério (iii) em meio água/formamida e sua aplicação na eletro-oxidação catalítica da l-dopamina /

Oliveira, Denys Ribeiro de January 2019 (has links)
Orientador: Devaney Ribeiro do Carmo / Resumo: Neste trabalho esta descrito a preparação de nanopartículas de Hexacianoferrato (II) de Cério (III) (NpsCe), em quatro proporções diferentes de solventes a saber: Água/Formamida (100:0; 80:20; 40:60; 0:100), afim de se investigar a influência dos solventes no tamanho, morfologia, nas propriedades físico-químicas, voltamétrica e eletrocatalíticas da NpsCe. As Nps foram caracterizadas pelas técnicas de Espectroscopia na Região do Infravermelho (FTIR), Difração de Raios-X (DRX), Microscopia Eletrônica de Varredura (MEV), Potencial Zeta, Voltametria Cíclica (VC) e Voltametria de Pulso Diferencial (VPD). Dos quatro sistemas estudados apenas o CeHCF-1 (100/0) e o CeHCF - 3 (40/60) se apresentaram sensíveis a concentrações do neurotransmissor L-dopamina permitindo a confecção de uma curva de calibração. O sistema CeHCF-1 apresentou duas regiões linerares de sinal em função da concentração de L-dopamina, com limite de detecção (LD) de 0,125 mmol L-1 e 0,023 mmol L-1 obtido pelas técnicas de VC e VPD, respectivamente. Para o sistema CeHCF-3 observou-se por VC uma região linear de intensidade de corrente anódica e a concentração de L-dopamina com LD de 0,0317 mmol L-1, já por VPD apresentou duas regiões lineares de sinal em função da concentração de L-dopamina, com LD de 1,98 x 10-4 e 0,0104 mmol L-1. O sistema CeHCF – 3 apresentou promissor a detecção e quantificação de DA em amostras reais. Assim realizou-se o estudo para avaliar a seletividade deste frente a substâncias comumente en... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This work is rearmed to nanoparticles of Cerium (III) Hexacyanoferrate (II) (NpsCe) analog of PB in four different proportions of Water / Formamide solvents (100: 0, 80:20, 40:60, 0: 100 ), to investigate the influence of solvents on the size, morphology, physicochemical, electrochemical and electrocatalytic properties of NpsCe. The Nps were characterized by the techniques of Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Zeta Potential, Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). Of the four systems studied, only CeHCF-1 (100/0) and CeHCF-3 (40/60) are formed in small concentrations of the neurotransmitter L-dopamine. The CeHCF-1 system showed two signal regions as a function of L-dopamine concentration, with detection limit (LD) of 0.125 mmol L-1 and 0.023 mmol L-1 given by the CV and DPV techniques, respectively. For the CeHCF-3 system it can be seen as a linear signal region as a function of the L-dopamine concentration by the CV technique with LD of 0.0317 mmol L-1, or by DPV through two linear signal regions in the function of the concentration of L-dopamine, with LD of 1.98 x 10-4 and 0.0104 mmol L-1. The launched CeHCF – 3 system promises to detect and quantify DA in real cases. Thus, a study was carried out to reduce the resistance of a substance found in the physiological industries that have the potential of oxidation and reduction of the DA. Substantial subtranslators studied here were Urea and Asco... (Complete abstract click electronic access below) / Mestre
332

Novel Microelectrodes and New Material for Real-Time Electrochemical Detection of Neurotransmitters

Li, Yuxin January 2021 (has links)
No description available.
333

Rearrangements of Radical Anions Generated from Cyclopropyl Ketones

Phillips, Janice Paige 11 November 1998 (has links)
Cyclopropyl-containing substrates have been frequently utilized as "probes" for the detection of SET pathways in organic and biorganic systems. These reactions are based on the cyclorpropylcarbinyl → homoallyl rearrangement, which is fast and essentially irreversible. The implicit assumption in such studies is that if a "radical" species is produced, it will undergo ring opening. We have found that there are two important factors to consider in the design of SET probes: 1) ring strain, the thermodynamic driving force for the rearrangement, and 2) resonance energy, which may help or hinder rearrangement, depending on the specific system. Delocalization of spin and charge were found to be important factors pertaining to substituent effects on the rates of radical anion rearrangements. Previous studies from our lab have centered on highly conjugated phenyl cyclopropyl ketones. This work considers a series of compounds varying in their conjugative components from a highly conjugated spiro[2.5]octa-4,7-dien-6-one and derivatives to simple aliphatic ketones. Utilizing cyclic, linear sweep voltammetry, and preparative electrolysis techniques, it was discovered that all substrates yielded ring opened products with rates and selectivities that will prove useful and informative in the design of mechanistic probes based on the cyclorpropylcarbinyl → homoallyl rearrangement. Rates of homogeneous electron transfer from a series of hydrocarbon mediators to substrates were measured using homogeneous catalysis techniques. Standard reduction potentials and reorganization energies of substrates were derived using Marcus theory. Conjugative interactions with the cyclopropyl group are discussed. / Ph. D.
334

Development of Electrochemical Sensors with Enhanced Specificity and Temporal Resolution for Biological Applications

Santos Cancel, Mirelis 11 June 2019 (has links)
No description available.
335

CYCLIC VOLTAMMETRIC DETERMINATION OF 17-α-ETHINYL ESTRADIOL ON DISPOSABLE SCREEN-PRINTED CARBON ELECTRODES

Qian, Zepeng 12 August 2019 (has links)
No description available.
336

Electrosynthesis of Lithium Borohydride from Trimethyl Borate and Hydrogen Gas

Omweri, James Mokaya January 2019 (has links)
No description available.
337

Mullite Membrane Reference Electrode Evaluation and Application for Ni-Cr Corrosion Behavior in High Temperature Chloride Salts

Meilus, Emily Vanda 28 June 2023 (has links)
Molten salt reactors (MSRs) using chloride-based salt-matrixes as coolants or fuels are a promising option for advanced nuclear reactors, but the extreme temperatures and corrosivity of molten salts pose a challenge for implementation. Molten MgCl2-NaCl-KCl is a viable candidate for MSRs that is considered in this work. Thermochemical properties are derived from electrochemical tests that aid in characterizing the properties of salts. To study these properties, some work has proposed using a three-electrode system with a reference electrode housed in a ceramic membrane. This research aims to develop a stable high-temperature reference electrode using a ceramic membrane that is then applied to develop an on-line monitoring system of Ni-Cr alloy corrosion in chloride salt. A mullite tube used as the membrane of a Ni(II)/Ni reference electrode in molten MgCl2-NaCl-KCl is studied. The performance of two different membrane thicknesses (1.325mm and 0.255mm) was studied in temperature ranges from 635oC to 835oC and data collected on the calculated formal potential of the Ni(II)/Ni system. Tests indicated that the results were stable and repeatable, and the formal potential for both systems differed from the previous experimental data by 0.12V at most, indicating that the system can be applied as an effective reference electrode. Using the reference electrode, on-line monitoring the corrosion of Ni-15wt.%Cr, Ni-20wt.%Cr, and Ni-30wt.%Cr was studied for 120 hours in MgCl2-NaCl-KCl. The on-line measurements showed the concentration changes of dissolved Cr and Ni by corrosion in the bulk molten salt. This work confirms that Ni(II)/Ni reference electrodes with a mullite tube membrane are stable and effective in molten chloride salt systems, particularly MgCl2-NaCl-KCl. The mullite membrane prepared by the manufacturer may be used directly for electrochemical applications without polishing, simplifying the reference electrode manufacturing process, and making it easier to replicate. The use of a Ni(II)/Ni reference electrode provides an avenue to study a different range of salt systems than previous reference electrodes allowed, particularly alloys in chloride salts at high temperatures. This work also confirms that the mullite tube may be used to perform on-line analysis of alloy corrosion in high temperature molten chloride salts. The study of Ni-Cr alloys in chloride salts better prepares the nuclear industry to select coolant salts and alloy containers with the best set of thermochemical and corrosion resistant characteristics for MSRs. / Master of Science / The United States receives approximately 18% of its energy from nuclear technology. Many of the reactors supplying this energy are at the end of their lifecycle and the decommissioning of some of these plants has already begun. In order to replace this older generation of nuclear reactors, a safer and cheaper option has been suggested: Molten Salt Reactors. Molten salt reactors (MSRs) using high temperature salts as a fuel or coolant are a promising option, but the extreme conditions of molten salts pose a challenge for construction and use of MSRs. Molten MgCl2-NaCl-KCl is a salt being considered for MSR application, and is considered in this work. Properties of the salts considered for MSRs are being studied diligently before implementation of these reactors. Electrochemical tests are used to study and monitor these properties. These electrochemical tests use a three-electrode system with a reference electrode housed in a membrane. In this work, a mullite tube is used as a ceramic membrane for a reference electrode in molten MgCl2-NaCl-KCl. The performance of two different membrane thicknesses (1.325mm and 0.255mm) was studied in temperature ranges from 635oC to 835oC. Results indicate that the system is an effective reference electrode. Using this innovative reference electrode, a method of monitoring on-line corrosion of Ni-15wt.%Cr, Ni-20wt.%Cr, and Ni-30wt.%Cr alloys was studied for 120-hour time periods during exposure to MgCl2-NaCl-KCl. This work confirms that reference electrodes with a mullite membrane may be used for electrochemical applications when studying molten chloride salts. The use of a Ni(II)/Ni reference electrode with a mullite membrane provides an avenue to study a different range of salt systems than previous reference electrodes and ceramics allowed, particularly chloride salts. Additionally, this mullite membrane Ni(II)/Ni reference electrode system may be used for monitoring on-line corrosion of Ni-Cr alloys in chloride salt systems.
338

Using Biochar Electrodes for Brackish Water Desalination

Stephanie, Hellen 11 August 2017 (has links)
Capacitive deionization based on electrosorption has become a viable process for brackish water desalination. In this study, activated biochar was employed as low-cost and alternative carbon-based electrodes substituting activated carbon with comparable adsorption capacity. Effects of different activation temperatures of the biochar were studied by physical characterization (i.e. SEM, TEM, elemental analysis, and Raman spectroscopy) and electrochemical characterization (i.e. cyclic voltammetry and galvanostatic charge/discharge measurement) based on the electrical double layer theory. The highest specific capacitance obtained (118.50 F g-1) was from activated biochar electrode treated at 800°C. The removal capacity was investigated by AAS and conductivity measurements. Several limitations associated with them were identified to improve the measurements. The removal capacity of biochar electrode is ~ 2 mg g-1 with significant results for both one-sided and two-sided t-test. In summary, activated biochar can be used as a cheap-alternative electrode material for desalination based on capacitive deionization.
339

The development of a microcomputer controlled multielectrode potentiostat and a 32-electrode thin-layer flow-cell /

DeAbreu, Michael Paul January 1988 (has links)
No description available.
340

Novel aromatic dendritic-co-poly(3-hexylthiophene) composites for photovoltaic cell application

Ramoroka, Morongwa Emmanuel January 2021 (has links)
Philosophiae Doctor - PhD / Fossil fuels are part of fuels that are formed from natural processes and they are called non-renewable sources of energy. These include natural gas, coal and oil. They have been used for decades to produce energy globally. However, there are some factors that related with the use of fossil fuels which results in an increase in the requirement of large amounts of energy. In addition, the use of fossil fuels as energy source has a negative impact on the environment and they cannot be reused. It is expected that at some point they will run out. Thus, a need for a renewable, clean and plentiful source of energy is urgent. Solar energy is one of the energy sources that may overcome fossil fuel drawbacks.

Page generated in 0.0357 seconds